## SSLC - MATHEMATICS PROGRESSION

## Chapter-2

## Progressions

## Arithmatic Geometric Progression Progression

Arithmatic Progression:
General form:

$$
\mathbf{a},(\mathbf{a}+\mathbf{d}),(\mathbf{a}+2 \mathbf{d}),(\mathbf{a}+3 \mathbf{d})---\quad \mathbf{a}+(\mathbf{n}-1) \mathbf{d}
$$

' $n$ ' th term of Arithmatic Progression: $T_{n}=\mathbf{a}+(n-1) d$
a - First term, n - Number of terms, d - Common difference

$$
\begin{aligned}
& T_{n+1}=T_{n}+d \\
& T_{n-1}=T_{n}-d \\
& d=\frac{T_{p}-T_{q}}{p-q} \\
& \quad d=\frac{T_{n}-a}{n-1}\left[T_{p}=T_{n}\right] \text { and }\left[T_{q}=1\right]
\end{aligned}
$$

Sum of first ' n ' terms of an A.P.:

$$
S_{n}=\frac{n}{2}[2 a+(n-1 d]
$$

a - First term, n - Number of terms, d - Common difference
Sum of first ' $n$ ' natural numbers:

$$
\sum_{1}^{n} n=\frac{n(n+1)}{2}
$$

$$
S_{n}=\frac{n}{2}\left[a+T_{n}\right]
$$

## Geometric Progression:

General form: a, ar, $\mathrm{ar}^{2}, \mathrm{ar}^{3}-\quad-\quad \mathrm{ar}^{\mathrm{n}-1}$
' $n$ ' th term of Arithmatic Progression:

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}
$$

$$
\begin{aligned}
& T_{n+1}=T_{n} \times r \\
& T_{n-1}=\frac{T_{n}}{r}
\end{aligned}
$$

Sum of first ' $n$ ' terms of an G.P:

$$
\begin{aligned}
& S_{n}=a\left(\frac{r^{n}-1}{(r-1)}\right) \quad r>1 \\
& S_{n}=a\left(\frac{1-r^{n}}{1-r}\right) \quad r<1 \\
& S_{2 n}: S_{n}=1+r^{n}: 1
\end{aligned}
$$

Sum of an infinite Geometric Series:

## $S_{\infty}=\frac{\mathbf{a}}{\mathbf{1 - r}}$

Harmonic Progression:
General form of H.P.: $\quad \frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2 d}, \frac{1}{a+3 d}-\quad-\quad-\frac{1}{a+(n-1) d}$
A sequence in which, the reciprocals of the terms form an artithmetic progression is called Harmonic progression.
' $n$ ' th term of H.P. $\quad T_{n}=\frac{1}{a+(n-1) d}$


## ILLUSTRATIVE EXAMPLES

1: Find the first three terms of the sequence whose $n^{\text {th }}$ term is $2 n+3$
Sol:T $\mathrm{T}_{\mathrm{n}}=2 \mathrm{n}+3$
$\mathrm{T}_{1}=2 \mathrm{x} 1+3=2+3=5$
$\mathrm{T}_{2}=2 \times 2+3=4+3=7$
$\mathrm{T}_{3}=2 \times 3+3=6+3=9$
$\therefore$ first three terms 5, 7, 9
2: Find the first four terms of the sequence whose $\mathrm{n}^{\text {th }}$ term is $\frac{n^{2}}{n+1}$
Sol: $\mathrm{T}_{\mathrm{n}}=\frac{\mathrm{n}^{2}}{\mathrm{n}+1}$
$\mathrm{T}_{1}=\frac{1^{2}}{1+1}=\frac{1}{2}$
$\mathrm{T}_{2}=\frac{2^{2}}{2+1}=\frac{4}{3}$
$\mathrm{T}_{3}=\frac{3^{2}}{3+1}=\frac{9}{4}$
$\mathrm{T}_{4}=\frac{4^{2}}{4+1}=\frac{16}{5}$
$\therefore$ The first four terms $\frac{1}{2}, \frac{4}{3}, \frac{9}{4}, \frac{16}{5}$
3: Find the $20^{\text {th }}$ term of the sequence if $\mathrm{T}_{\mathrm{n}}=3 \mathrm{n}-10$.
Sol: $\mathrm{T}_{\mathrm{n}}=3 \mathrm{n}-10$
$\mathrm{T}_{20}=3 \times 20-10$
$\mathrm{T}_{20}=60-10$
$\mathrm{T}_{20}=50$
4:If $\mathrm{T}_{\mathrm{n}}=5 \mathrm{n}+2$ find $\mathrm{T}_{\mathrm{n}+1}$.
Sol: $\mathrm{T}_{\mathrm{n}+1}=5(\mathrm{n}+1)+2$
$\mathrm{T}_{\mathrm{n}+1}=5 \mathrm{n}+5+2$
$\mathrm{T}_{\mathrm{n}+1}=5 \mathrm{n}+7$
5:If $\mathrm{T}_{\mathrm{n}}=\mathrm{n}^{3}-1$ find the value of ' n ' so that $\mathrm{T}_{\mathrm{n}}=26$.
$\mathrm{T}_{\mathrm{n}}=\mathrm{n}^{3}-1$
$26=n^{3}-1$
$26+1=n^{3}$
$\mathrm{n}^{3}=27$
$\mathrm{n}=3$

## Exercise 2.1

1. Which of the following form a sequence?
(i) $4,11,18,25, \ldots$ sequence
(ii) $43,32,21,10 \ldots$. sequence
(iii) $27,19,40,70, \ldots \ldots$. Not a sequence
(iv) $7,21,63,189, \ldots \ldots$ sequence
2. Write the next two terms of the following sequences.
(i) $13,15,17,-,-, \quad$ Ans: 19,21
(ii) $\frac{2}{3}, \frac{3}{4}, \frac{4}{5},-,-$

Ans: $\frac{5}{6}, \frac{6}{7}$
(iii) $1,0.1,0.01,-,-\quad$ Ans: $0.001,0.0001$
(iv) $6,12,24,-,-\quad$ Ans: 48.96
3. If $\mathrm{T}_{\mathrm{n}}=5-4 \mathrm{n}$ find the first three terms.
$\mathrm{T}_{\mathrm{n}}=5-4 \mathrm{n}$
$\mathrm{T}_{1}=5-4 \mathrm{x} 1=5-4=1$
$\mathrm{T}_{2}=5-4 \times 2=5-8=-3$
$\mathrm{T}_{3}=5-4 \times 3=5-12=-7$
4. If $\mathrm{T}_{\mathrm{n}}=2 \mathrm{n}^{2}+5$, find (i) $\mathrm{T}_{3}$ and (ii) $\mathrm{T}_{10}$
(i) $\mathrm{T}_{3}=2 \times 3^{2}+5$
$\mathrm{T}_{3}=2 \mathrm{x} 9+5$
$\mathrm{T}_{3}=18+5$
$\mathrm{T}_{3}=23$
(ii) $\mathrm{T}_{10}=2 \times 10^{2}+5$
$\mathrm{T}_{10}=2 \times 100+5$
$\mathrm{T}_{10}=200+5$
$\mathrm{T}_{10}=205$
5. If $\mathrm{T}_{\mathrm{n}}=\mathrm{n}^{2}-1$, find (i) $\mathrm{T}_{\mathrm{n}-1}$ and (ii) $\mathrm{T}_{\mathrm{n}+1}$.
(i) $\mathrm{T}_{\mathrm{n}-1}=(\mathrm{n}-1)^{2}-1$
$\mathrm{T}_{\mathrm{n}-1}=\mathrm{n}^{2}-2 \mathrm{n}+1-1$
$\mathrm{T}_{\mathrm{n}-1}=\mathrm{n}^{2}-2 \mathrm{n}$
(ii) $\mathrm{T}_{\mathrm{n}+1}=(\mathrm{n}+1)^{2}-1$
$\mathrm{T}_{\mathrm{n}+1}=\mathrm{n}^{2}+2 \mathrm{n}+1-1$
$\mathrm{T}_{\mathrm{n}+1}=\mathrm{n}^{2}+2 \mathrm{n}$
6. If $\mathrm{T}_{\mathrm{n}}=\mathrm{n}^{2}+4$ an $\mathrm{T}_{\mathrm{n}}=200$ find the value of ' n '.
$\mathrm{T}_{\mathrm{n}}=\mathrm{n}^{2}+4$
$200=\mathrm{n}^{2}+4$
$\mathrm{n}^{2}+4=200$
$\mathrm{n}^{2}=200-4$
$\mathrm{n}^{2}=196$
$\mathrm{n}^{2}=14$

## ILLUSTRATIVE EXAMPLES

1: Check whether $13,19,25,31, \ldots$ form an A.P.
Sol: $\mathrm{T}_{1}=13, \mathrm{~T}_{2}=19, \mathrm{~T}_{3}=25, \mathrm{~T}_{4}=31$
$\mathrm{d}=\mathrm{T}_{2}-\mathrm{T}_{1}=19-13=6$
$\mathrm{d}=\mathrm{T}_{3}-\mathrm{T}_{2}=25-19=6$
$\mathrm{d}=\mathrm{T}_{4}-\mathrm{T}_{3}=31-25=6$
Since there is a common difference, the given sequence is an A.P.
2: If $\mathrm{a}=3$ and $\mathrm{c} . \mathrm{d}=4$, find the A.P .
Sol: $\mathrm{T}_{1}=3$,
$\mathrm{T}_{2}=\mathrm{a}+\mathrm{d}=3+4=7$
$\mathrm{T}_{3}=7+4=11$
$\mathrm{T}_{4}=11+4=15$
$\therefore$ The A.P is $3,7,11,15 \ldots$. .
3: In the A.P 12, 19, 26,...... find $\mathrm{T}_{\mathrm{n}}$ and hence find $\mathrm{T}_{15}$.
Sol: $\mathrm{a}=12, \mathrm{~d}=7$,
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{T}_{\mathrm{n}}=12+(\mathrm{n}-1) 7$
$\mathrm{T}_{\mathrm{n}}=12+7 \mathrm{n}-7$
$\mathrm{T}_{\mathrm{n}}=7 \mathrm{n}+5$
$\mathrm{T}_{15}=7 \mathrm{x} 15+5$
$\mathrm{T}_{15}=105+5$
$\mathrm{T}_{15}=110$
4: Find the number of terms in the finite A.P 7, 13, 19, ..........
Sol: $a=7, d=6, T_{n}=151$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$151=7+(n-1) 6$
$151=7+6 n-6$
$151=1+6 n$
$6 \mathrm{n}=151-1$
$6 \mathrm{n}=150$
$\mathrm{n}=25$
5: The $8^{\text {th }}$ term of an A.P is 17 and the $19^{\text {th }}$ term is 39 . Find the $25^{\text {th }}$ term.
Sol: $\mathrm{T}_{8}=17, \mathrm{~T}_{19}=39, \mathrm{~T}_{25}=$ ?,
$d=\frac{T_{p}-T_{q}}{p-q}$
$\mathrm{d}=\frac{\mathrm{T}_{19}-\mathrm{T}_{8}}{19-8}$
$\mathrm{d}=\frac{39-17}{11}$
$\mathrm{d}=\frac{22}{11}$
$\mathrm{d}=2$
$\mathrm{T}_{\mathrm{p}}=\mathrm{T}_{\mathrm{q}}+(\mathrm{p}-\mathrm{q}) \mathrm{d}$
$\mathrm{T}_{25}=\mathrm{T}_{19}+(25-19) \mathrm{d}$
$\mathrm{T}_{25}=39+6 \times 2$
$\mathrm{T}_{25}=39+12$
$\mathrm{T}_{25}=51$
6: Determine the A.P. whose $4^{\text {th }}$ term is 17 and the $10^{\text {th }}$ term exceeds the
$7^{\text {th }}$ term by 12
$\mathrm{T}_{4}=17, \mathrm{~T}_{10}=\mathrm{T}_{7}+12$
$a+9 d=a+6 d+12$
$9 d-6 d=12$
$3 \mathrm{~d}=12$
$\mathrm{d}=4$
$\mathrm{T}_{4}=17$
$a+3 d=17$
$a+3 x 4=17$
$a+12=17$
$\mathrm{a}=17-12$
$a=5$
$\therefore$ The A.P is $5,9,13,17 \ldots \ldots$
7: In an A.P, 7 times the $7^{\text {th }}$ term is equal to 11 times the $11^{\text {th }}$ term. Find the $18^{\text {th }}$ term of the A.P.
$7 \mathrm{~T}_{7}=11 \mathrm{~T}_{11}$
$7(a+6 d)=11(a+10 d)$
$7 a+42 d=11 a+110 d$
$7 a-11 a=110 d-42 d$
$-4 a=68 d$
$-\mathrm{a}=17 \mathrm{~d}$
$a=-17 d$
$\mathrm{T}_{18}=\mathrm{a}+17 \mathrm{~d}$
$T_{18}=-17 d+17 d$
$\mathrm{T}_{18}=0$

## Exercise 2.2

1. Write the next four terms of the following A.P.
(i) $0,-3,-6, \ldots$
(ii) $\frac{1}{6}, \frac{1}{3}, \frac{1}{2} \ldots$
(iii) $a+b, a-b, a-3 b, \ldots$
(i) $0,-3,-6,-9,-12,-15,-18$
(ii) $\frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1, \frac{7}{6}$
(iii) $a+b, a-b, a-3 b, a-5 b, a-7 b, a-9 b, a-11 b$
2. Find the sequence if.
(i) $\mathrm{T}_{\mathrm{n}}=2 \mathrm{n}-1$ (ii) $\mathrm{T}_{\mathrm{n}}=5 \mathrm{n}+1$
(i) $\mathrm{T}_{1}=2 \times 1-1 \quad \mathrm{~T}_{2}=2 \times 2-1 \quad \mathrm{~T}_{3}=2 \times 3-1$
$\mathrm{T}_{1}=2-1 \quad \mathrm{~T}_{2}=4-1 \quad \mathrm{~T}_{3}=6-1$
$\mathrm{T}_{1}=1 \quad \mathrm{~T}_{2}=3 \quad \mathrm{~T}_{3}=5$
$\therefore$ The sequence is : $1,3,5,7,9 \ldots$
(ii) $\mathrm{T}_{1}=5 \times 1+1 \quad \mathrm{~T}_{2}=5 \times 2+1 \quad \mathrm{~T}_{3}=5 \times 3+1$
$\mathrm{T}_{1}=5+1 \quad \mathrm{~T}_{2}=10+1 \quad \mathrm{~T}_{3}=15+1$
$\mathrm{T}_{1}=6 \quad \mathrm{~T}_{2}=11 \quad \mathrm{~T}_{3}=16$
$\therefore$ The sequence is : $6,11,16,21,26 \ldots$
3. In an A.P,
(i) If $\mathrm{a}=-7, \mathrm{~d}=5$ find $\mathrm{T}_{12}$.
(ii) If $\mathrm{a}=-1, \mathrm{~d}=-3$ find $\mathrm{T}_{50}$.
(iii) If $\mathrm{a}=12, \mathrm{~d}=4, \mathrm{~T}_{\mathrm{n}}=76$ find ' n '. $^{\text {'. }}$
(iv) If $\mathrm{d}=-2, \mathrm{~T}_{22}=-39$ find ' $a$ '.
(v) If $\mathrm{a}=13, \mathrm{~T}_{15}=55$ find ' d '.
(i) If $\mathrm{a}=-7, \mathrm{~d}=5$ find $\mathrm{T}_{12}$.
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{T}_{12}=-7+(12-1) 5$
$\mathrm{T}_{12}=-7+11 \times 5$
$\mathrm{T}_{12}=-7+55$
$\mathrm{T}_{12}=48$
(ii) If $\mathrm{a}=-1, \mathrm{~d}=-3$ find $\mathrm{T}_{50}$.
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{T}_{50}=-1+(50-1)-3$
$\mathrm{T}_{50}=-1+49 \mathrm{x}-3$
$\mathrm{T}_{50}=-1+-147$
$\mathrm{T}_{50}=-148$
(iii) If $\mathrm{a}=12, \mathrm{~d}=4, \mathrm{~T}_{\mathrm{n}}=76$ find ' n '
$a+(n-1) d=T_{n}$
$12+(n-1) 4=76$
$12+4 \mathrm{n}-4=76$
$4 \mathrm{n}+8=76$
$4 \mathrm{n}=76-8$
$4 \mathrm{n}=68$
$\mathrm{n}=17$
(iv) If $\mathrm{d}=-2, \mathrm{~T}_{22}=-39$ find ' $a$ '.
$\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=\mathrm{T}_{\mathrm{n}}$
$a+(22-1)-2=-39$
$a+(21) x-2=-39$
a $-42=-39$
$\mathrm{a}=-39+42$
$\mathrm{a}=3$
(v) If $\mathrm{a}=13, \mathrm{~T}_{15}=55$ find ' d '
$\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=\mathrm{T}_{\mathrm{n}}$
$13+(15-1) \mathrm{d}=55$
$13+14 d=55$
$14 \mathrm{~d}=55-13$
$14 \mathrm{~d}=42$
$\mathrm{d}=3$
4. Find the number of terms in the A.P,100, 96, 92, . . , 12.
$\mathrm{a}=100, \mathrm{~d}=\mathrm{T}_{2}-\mathrm{T}_{1} 96-100=-4, \mathrm{~T}_{\mathrm{n}}=12$
$\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=\mathrm{T}_{\mathrm{n}}$
$100+(\mathrm{n}-1)-4=\mathrm{T}_{\mathrm{n}}$
$100-4 \mathrm{n}+4=12$
$-4 n+104=12$
$-4 \mathrm{n}=12-104$
$-4 n=-92$
$\mathrm{n}=23$
5. The angles of a triangle are in A.P. If the smallest angle is $50^{\circ}$, find the other two angles.
$a, a+d, a+2 d$ are the 3 angles of a triangle. The smallest angle $a=50^{\circ}$
$\mathrm{a}+(\mathrm{a}+\mathrm{d})+(\mathrm{a}+2 \mathrm{~d})=180^{\circ}\left[\because\right.$ Sum of 3 angles of a triangle is $\left.180^{\circ}\right]$
$50^{0}+\left(50^{0}+\mathrm{d}\right)+\left(50^{0}+2 \mathrm{~d}\right)=180^{0}$
$150^{\circ}+3 \mathrm{~d}=180^{\circ}$
$3 \mathrm{~d}=180^{\circ}-150^{\circ}=30^{\circ}$
$\mathrm{d}=10^{0}$
$\therefore 3$ angles of a triangle $50^{\circ}, 50^{\circ}+10^{\circ}, 50^{\circ}+2 \times 10^{\circ}=500,60^{\circ}, 70^{\circ}$
6. An A.P consists of 50 terms of which $3^{\text {rd }}$ term is 12 and last term is 106 . Find the $29^{\text {th }}$ term 50 .
$\mathrm{n}=50, \mathrm{~T}_{3}=12, \mathrm{~T}_{50}=106, \mathrm{~T}_{29}=$ ?
$\mathrm{d}=\frac{\mathrm{T}_{\mathrm{p}}-\mathrm{T}_{\mathrm{q}}}{\mathrm{p}-\mathrm{q}}$
$d=\frac{T_{50}-T_{3}}{50-3}$
$\mathrm{d}=\frac{106-12}{47}$
$\mathrm{d}=\frac{94}{47}=2 \Rightarrow \mathrm{~d}=2$
$\mathrm{T}_{29}=\mathrm{T}_{3}+26 \mathrm{~d}\left[\because \mathrm{~T}_{\mathrm{p}}=\mathrm{T}_{\mathrm{q}}+(\mathrm{p}-\mathrm{q}) \mathrm{d}\right]$
$\mathrm{T}_{29}=12+26 \times 2$
$\mathrm{T}_{29}=12+52$
$\mathrm{T}_{29}=64$
7. The sum of $4^{\text {th }}$ and $8^{\text {th }}$ terms of an A.P is 24 and the sum of $6^{\text {th }}$ and $10^{\text {th }}$ terms of the same
A.P is 44 . Find the first three terms.
$\mathrm{T}_{4}+\mathrm{T}_{8}=24, \mathrm{~T}_{6}+\mathrm{T}_{10}=44$
$\mathrm{T}_{4}+\mathrm{T}_{8}=24$
$\Rightarrow \mathrm{a}+(4-1) \mathrm{d}+\mathrm{a}+(8-1) \mathrm{d}=24$
$\Rightarrow \mathrm{a}+3 \mathrm{~d}+\mathrm{a}+7 \mathrm{~d}=24$
$\Rightarrow 2 \mathrm{a}+10 \mathrm{~d}=24$
$\Rightarrow \mathrm{a}+5 \mathrm{~d}=12$
$\mathrm{T}_{6}+\mathrm{T}_{10}=44$
$\Rightarrow \mathrm{a}+(6-1) \mathrm{d}+\mathrm{a}+(10-1) \mathrm{d}=44$
$\Rightarrow \mathrm{a}+5 \mathrm{~d}+\mathrm{a}+9 \mathrm{~d}=44$
$\Rightarrow 2 \mathrm{a}+14 \mathrm{~d}=44$
$\Rightarrow \mathrm{a}+7 \mathrm{~d}=22$
(1) - (2)
$\mathrm{a}+5 \mathrm{~d}=12$

| $\mathrm{a}+7 \mathrm{~d}=22$ |
| :---: |
| $-2 \mathrm{~d}=-10$ |

$\mathrm{d}=5$
Substitute d = 5 in Eqn (1),
$a+5 x 5=12 \Rightarrow a+25=12 \Rightarrow a=12-25=-13$
$\therefore$ The first three terms are : $\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d} \Rightarrow-13,-13+5,-13+10 \Rightarrow-13,-8,-3$
8. The ratio of $7^{\text {th }}$ to $3^{\text {rd }}$ term of an A.P is $12: 5$. Find the ratio of $13^{\text {th }}$ to $4^{\text {th }}$ term.
$\frac{\mathrm{T}_{7}}{\mathrm{~T}_{3}}=\frac{12}{5} \Rightarrow 5 \mathrm{~T}_{7}=12 \mathrm{~T}_{3}$
$\Rightarrow 5[\mathrm{a}+(7-1) \mathrm{d}]=12[\mathrm{a}+(3-1) \mathrm{d}]$
$\Rightarrow 5 \mathrm{a}+30 \mathrm{~d}=12 \mathrm{a}+24 \mathrm{~d}$
$\Rightarrow 30 \mathrm{~d}-24 \mathrm{~d}=12 \mathrm{a}-5 \mathrm{a}$
$\Rightarrow 6 \mathrm{~d}=7 \mathrm{a}$
$\Rightarrow \mathrm{a}=\frac{6 d}{7}$
$\frac{\mathrm{T}_{13}}{\mathrm{~T}_{4}}=\frac{\mathrm{a}+(13-1) \mathrm{d}}{\mathrm{a}+(4-1) \mathrm{d}}$
$\frac{\mathrm{T}_{13}}{\mathrm{~T}_{4}}=\frac{\frac{6 \mathrm{~d}}{7}+12 \mathrm{~d}}{\frac{6 \mathrm{~d}}{7}+3 \mathrm{~d}}$
$\frac{T_{13}}{T_{4}}=\frac{\frac{6 d+84 d}{7}}{\frac{6 d+21 d}{7}}$
$\frac{\mathrm{T}_{13}}{\mathrm{~T}_{4}}=\frac{10}{3}$
$\mathrm{T}_{13}: \mathrm{T}_{4}=10: 3$
9. A company employed 400 persons in the year 2001 and each year increased by 35 persons. In which year the number of employees in the company will be 785 ?
This is in A.P.,
$\therefore \mathrm{a}=400 \mathrm{~d}=35, \mathrm{~T}_{\mathrm{n}}=785$
$\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=\mathrm{T}_{\mathrm{n}}$
$400+(\mathrm{n}-1) 35=785$
$400+35 \mathrm{n}-35=785$
$35 n=785-365$
$35 n=420$
$\mathrm{n}=\frac{420}{35}$
$\mathrm{n}=12$
$\therefore$ After 12 years the number of employees in the company will be 785 .
$\Rightarrow 2001+12=2013^{\text {th }}$ year
10. If the $p^{\text {th }}$ term of an A.P is $q$ and the $q^{\text {th }}$ term is $p$, prove that the $n^{\text {th }}$ term equal to ( $p+q-$
n).
$\mathrm{d}=\frac{\mathrm{T}_{\mathrm{p}}-\mathrm{T}_{\mathrm{q}}}{\mathrm{p}-\mathrm{q}}$
$\mathrm{d}=\frac{\mathrm{q}-\mathrm{p}}{\mathrm{p}-\mathrm{q}}$
$\mathrm{d}=-1$
$\mathrm{T}_{\mathrm{n}}=\mathrm{T}_{\mathrm{p}}+(\mathrm{n}-\mathrm{p}) \mathrm{d}$
$\mathrm{T}_{\mathrm{n}}=\mathrm{q}+(\mathrm{n}-\mathrm{p}) \mathrm{x}-1$
$\mathrm{T}_{\mathrm{n}}=\mathrm{q}-\mathrm{n}+\mathrm{p}$
$\mathrm{T}_{\mathrm{n}}=\mathrm{p}+\mathrm{q}-\mathrm{n}$
11. Find four numbers in A.P such that the sum of $2^{\text {nd }}$ and $3^{\text {rd }}$ terms is 22 and the product
of $1^{\text {st }}$ and $4^{\text {th }}$ terms is 85 .
$\mathrm{T}_{2}+\mathrm{T}_{3}=22, \mathrm{~T}_{1} \mathrm{X} \mathrm{T}_{4}=85$
$\mathrm{T}_{2}+\mathrm{T}_{2}+\mathrm{d}=22$
$\mathrm{a}+(2-1) \mathrm{d}+\mathrm{a}+(2-1) \mathrm{d}+\mathrm{d}=22$
$a+d+a+d+d=22$
$2 \mathrm{a}+3 \mathrm{~d}=22$
$\mathrm{a}+3 \mathrm{~d}=22-\mathrm{a}$
$\mathrm{T}_{1 \mathrm{x}} \mathrm{T}_{4}=85$
$\mathrm{a}[(\mathrm{a}+(4-1) \mathrm{d}]=85$
$\mathrm{a}[(\mathrm{a}+3 \mathrm{~d}]=85$
$\mathrm{a}[22-\mathrm{a}]=85$
[ Substituting (1)]
$22 a-a^{2}=85$
$-\mathrm{a}^{2}+22 \mathrm{a}-85=0$
$\mathrm{a}^{2}-22 \mathrm{a}+85=0$
$\mathrm{a}^{2}-17 \mathrm{a}-5 \mathrm{a}+85=0$
$a(a-17)-5(a-17)=0$
$(a-17)(a-5=0$
$\mathrm{a}=17 \quad$ Or $\mathrm{a}=5$
When Sustituting in (1)
$17+3 \mathrm{~d}=22-17 \Rightarrow 17+3 \mathrm{~d}=5 \Rightarrow 3 \mathrm{~d}=5-17 \Rightarrow \mathrm{~d}=\frac{-12}{3} \Rightarrow \mathrm{~d}=-4$
Or
$5+3 \mathrm{~d}=22-5 \Rightarrow 5+3 \mathrm{~d}=17 \Rightarrow 3 \mathrm{~d}=17-5 \Rightarrow \mathrm{~d}=\frac{12}{3} \Rightarrow \mathrm{~d}=4$
$\therefore$ The four terms are: $17,13,9,5$ Or 5, $9,13,17$

## ILLUSTRAYIVE EXAMPLES

1:If $\mathrm{T}_{\mathrm{n}}=2 \mathrm{n}-1$ find $\mathrm{S}_{3}$.
Sol:: $\mathrm{S}_{3}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}$
$\mathrm{T}_{\mathrm{n}}=2 \mathrm{n}-1$
$\mathrm{T}_{1}=2 \mathrm{x} 1-1=2-1=1$
$\mathrm{T}_{2}=2 \times 2-1=4-1=3$
$\mathrm{T}_{3}=2 \times 3-1=6-1=5$
$\therefore \mathrm{S}_{3}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}=1+3+5=9$
2:IF $\mathrm{T}_{\mathrm{n}}=\mathrm{n}^{2}+1$ find $\mathrm{S}_{2}$
Sol: $\mathrm{S}_{2}=\mathrm{T}_{1}+\mathrm{T}_{2}$
$\mathrm{T}_{\mathrm{n}}=\mathrm{n}^{2}+1$
$\mathrm{T}_{1}=1^{2}+1=1+1=2$
$\mathrm{T}_{2}=2^{2}+1=4+1=5$
$\therefore \mathrm{S}_{2}=\mathrm{T}_{1}+\mathrm{T}_{2}=2+5=7$

## ILLUSTRAYIVE EXAMPLES

1:If $\mathrm{T}_{\mathrm{n}}=5 \mathrm{n}-2$ find $\mathrm{S}_{4}$
Sol:: $\mathrm{S}_{4}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\mathrm{T}_{4}$
$\mathrm{T}_{\mathrm{n}}=5 \mathrm{n}-2$
$\mathrm{T}_{1}=5 \mathrm{x} 1-2=5-2=3$
$\mathrm{T}_{2}=5 \mathrm{x} 2-2=10-2=8$
$\mathrm{T}_{3}=5 \times 3-2=15-2=13$
$\mathrm{T}_{4}=5 \times 4-2=20-2=18$
$\therefore \mathrm{S}_{4}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\mathrm{T}_{4}=3+8+13+18=42$
2: Find the sum of first 20 terms of the series $1+2+3+\ldots .$. .
Sol: $\sum \mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$ [Sum of first $\mathrm{n}^{\prime}$ natural numbers]
$\sum 20=\frac{20(20+1)}{2}$
$\sum 20=\frac{20 \times 21}{2}$
$\sum 20=10 \times 21$
$\sum 20=210$
3: Find the sum of the first 15 terms of the A.P $5,8,11,14, \ldots$.
Sol: $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{n}=15, \mathrm{a}=5, \mathrm{~d}=3$
$\mathrm{S}_{15}=\frac{15}{2}[2 \times 5+(15-1) 3]$
$\mathrm{S}_{15}=\frac{15}{2}[10+14 \mathrm{x} 3]$
$\mathrm{S}_{15}=\frac{15}{2}[10+42$
$\mathrm{S}_{15}=\frac{15}{2} \times 52$
$\mathrm{S}_{15}=15 \mathrm{x} 26$
$\mathrm{S}_{15}=390$
4: Find the sum of all natural numbers between 200 and 300 which are exactly divisible by 6 .
Sol:The sum of all natural numbers between 200and 300 which are exactly divisible by 6 ,
$204+210+216+$. . . . +294
$\mathrm{a}=204, \mathrm{~d}=6, \mathrm{~T}_{\mathrm{n}}=294$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$294=204+(n-1) 6$
$294-204=6 n-6$
$90+6=6 n$
$6 n=96$
$\mathrm{n}=16$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}\left[a+T_{n}\right]$
$\mathrm{S}_{16}=\frac{16}{2}[204+294]$
$\mathrm{S}_{16}=8$ [498]
$\mathrm{S}_{16}=3984$
5: Ramesh wants to buy a cell phone. He can buy it by paying Rs 15,000 cash or by making 12 monthly instalments as Rs 1800 in the $1^{\text {st }}$ month, Rs 1750 in $2^{\text {nd }}$ month Rs 1700 in $3^{\text {rd }}$ month and so on. If he pays the money in instalments. find,
(i) total amount paid in 12 instalments 12
(ii) how much extra he has to pay over and above the cost price.
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 a+(n-1) d$
$\mathrm{n}=12, \mathrm{a}=1800, \mathrm{~d}=-50$
$\mathrm{S}_{12}=\frac{12}{2}[2 \times 1800+(12-1)-50]$
$S_{12}=6[3600+11 \mathrm{x}-50]$
$S_{12}=6[3600-550]$
$\mathrm{S}_{12}=6 \times 3050$
$S_{12}=18,300$
$\therefore$ Total amount paid in 12 instalments $=$ Rs 18300 .
Extra amount paid $=18300-1500=$ Rs 3,300
6: Find three positive integers in A.P such that their sum is 24 and their product is 480 .
Let the three terms be: $a-d, a, a+d$,
$a-d+a+a+d=24$
$3 \mathrm{a}=24$
$\therefore a=8$
$(a-d) \times a \times(a+d)=480$
$(8-d) \times 8 \times(8+d)=480$
$(8-d)(8+d)=60$
$8^{2}-\mathrm{d}^{2}=60$
$64-\mathrm{d}^{2}=60$
$64-60=d^{2}$
$\mathrm{d}^{2}=4$
$\therefore \mathrm{d}= \pm 2$
$\therefore$ the terms are: $8-2,8,8+2$

Or $8-(-2), 8,8+(-2)$
$\therefore$ the terms are: $6,8,10$ OR $10,8,6$
7: A spiral is made up of successive semicircles, with centres alternately at A and B, starting with centre at A, of radii $0.5 \mathrm{~cm}, 1 \mathrm{~cm}, 1.5 \mathrm{~cm}, 2 \mathrm{~cm} . \ldots$. . as shown in figure. What is the total length of such a spiral made up of thirteen consecutive semicircles?
$\left[\right.$ Take $\left.\pi=\frac{22}{7}\right]$
Sol: $1_{1}, 1_{2}, 1_{3} \ldots$ be the length of semicircles of radiusती $r_{1}=0.5 \mathrm{~cm}, r_{2}=1 \mathrm{~cm}, r_{3}=1.5 \mathrm{~cm} \ldots$ respectively
Length of the semicirlce $=\pi r$
$\Rightarrow l_{1}=\pi r_{1} \Rightarrow 0.5 \pi \Rightarrow \frac{\pi}{2}$
$1_{2}=\pi, \Rightarrow 2\left(\frac{\pi}{2}\right), 1_{3}=3\left(\frac{\pi}{2}\right) \ldots .1_{13}=13\left(\frac{\pi}{2}\right)$
Total length of the spiral $=1_{1}+1_{2}+1_{3}+\ldots .+1_{13}$
$\Rightarrow \frac{\pi}{2}+2\left(\frac{\pi}{2}\right)+3\left(\frac{\pi}{2}\right) \ldots \ldots+13\left(\frac{\pi}{2}\right)$
$\Rightarrow \frac{\pi}{2}(1+2+3+\ldots \ldots+13)$
$\Rightarrow \frac{\pi}{2}\left[\sum 13\right]$
$\Rightarrow \frac{\pi}{2}\left[\frac{13(13+1)}{2}\right]$
$\Rightarrow \frac{\pi}{2}\left[\frac{13 \times 14}{2}\right]=\frac{1}{2} \times \frac{22}{7} \times 13 \times 7=11 \times 13=143$
Exercise 2.3

1. If $\mathrm{T}_{\mathrm{n}}=2 \mathrm{n}+3$ find $\mathrm{S}_{2}$
$\mathrm{S}_{2}=\mathrm{T}_{1}+\mathrm{T}_{2}$
$\mathrm{S}_{2}=\mathrm{T}_{1}+\mathrm{T}_{2}$
$\mathrm{T}_{1}=2 \mathrm{x} 1+3=2+3=5$
$\mathrm{T}_{2}=2 \times 2+3=4+3=7$
$\therefore \mathrm{S}_{2}=5+7$
$\therefore \mathrm{S}_{2}=12$
2. Find the sum of.
(i) $3+7+11+\ldots$. . to 25 terms
$\mathrm{a}=3, \mathrm{~d}=4, \mathrm{n}=25$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{S}_{25}=\frac{25}{2}[2 \times 3+(25-1) 4]$
$\mathrm{S}_{25}=\frac{25}{2}[6+24 \mathrm{x} 4]$
$\mathrm{S}_{25}=\frac{25}{2}[6+96]$
$\mathrm{S}_{25}=\frac{25}{2}[102]$
$\mathrm{S}_{25}=25[51]$
$\mathrm{S}_{25}=1275$
(ii) $-3,1,5, \ldots$. to 17 terms.
$a=-3, d=4, n=17$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{\mathrm{n}}=\frac{17}{2}[2 \cdot \mathrm{x}(-3)+(17-1) 4]$
$\mathrm{S}_{\mathrm{n}}=\frac{17}{2}[-6+16 \mathrm{x} 4]$
$\mathrm{S}_{\mathrm{n}}=\frac{17}{2}[-6+64]$
$\mathrm{S}_{\mathrm{n}}=\frac{17}{2}[58]$
$\mathrm{S}_{\mathrm{n}}=17$ [29]
$\mathrm{S}_{\mathrm{n}}=493$
(iii) $3 \mathrm{a}, \mathrm{a},-\mathrm{a}, \ldots \ldots \ldots$ to a terms
$\mathrm{a}=3 \mathrm{a}, \mathrm{d}=-2 \mathrm{a}, \mathrm{n}=\mathrm{a}$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$S_{n}=\frac{a}{2}[2(3 a)+(a-1)(-2 a)]$
$\mathrm{S}_{\mathrm{n}}=\frac{a}{2}\left[6 \mathrm{a}+\left(-2 \mathrm{a}^{2}+2 \mathrm{a}\right)\right]$
$S_{n}=\frac{a}{2}\left[8 a-2 a^{2}\right]$
$S_{n}=\frac{2 a}{2}\left[4 a-a^{3}\right]$
$S_{n}=a\left[4 a-a^{3}\right]$
$S_{n}=4 a^{2}-a^{3}$
(iv) $\mathrm{p}, \mathrm{o},-\mathrm{p}, \ldots \ldots \ldots$ to p terms
$\mathrm{a}=\mathrm{p}, \mathrm{d}=-\mathrm{p}, \mathrm{n}=\mathrm{p}$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{n}=\frac{p}{2}[2 p+(p-1)(-p)]$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{p}}{2}\left[2 \mathrm{p}+\left(-\mathrm{p}^{2}+\mathrm{p}\right)\right]$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{p}^{2}}{2}[3-\mathrm{p}]$
3. Find the sum of the first 111 terms of an A.P. whose $56^{\text {th }}$ term is $\frac{5}{37}$.
$\mathrm{n}=111, \mathrm{~T}_{56}=\frac{5}{37}$,
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$a+(56-1) d=\frac{5}{37}$
$\mathrm{a}+55 \mathrm{~d}=\frac{5}{37}-------(1)$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{111}=\frac{111}{2}[2 a+(111-1) d]$
$S_{111}=\frac{111}{2}[2 a+110 d]$
$\mathrm{S}_{111}=\frac{111 \times 2}{2}[a+55 d]$
$S_{111}=111\left[\frac{5}{37}\right] \quad$ [Substitute in (i) ]
$\mathrm{S}_{111}=\frac{555}{37}$
$\mathrm{S}_{111}=15$
4. For a sequence of natural numbers,
(a) find (i) $\sum_{n=1}^{20} 20$ (ii) $\mathrm{S}_{50}-\mathrm{S}_{40}$ (iii) $\mathrm{S}_{30}+\mathrm{S}_{15}$
(b) find n' if (i) $\mathrm{S}_{\mathrm{n}}=55$ (ii) $\mathrm{S}_{\mathrm{n}}=15$
(a) (i) $\sum_{n=1}^{20} 20$
$\sum n=\frac{n(n+1)}{2}$
$\sum 20=\frac{20(20+1)}{2}$

SSLC - Mathematics Progression
$\sum 20=10 \times 21$
$\sum 20=210$
(ii) $\mathrm{S}_{50}-\mathrm{S}_{40}$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$\mathrm{S}_{50}-\mathrm{S}_{40}=\frac{50(50+1)}{2}-\frac{40(40+1)}{2}$
$S_{50}-S_{40}=25 \times 51-20 \times 41$
$\mathrm{S}_{50}-\mathrm{S}_{40}=1275-820$
$\mathrm{S}_{50}-\mathrm{S}_{40}=455$
(iii) $\mathrm{S}_{30}+\mathrm{S}_{15}$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$\mathrm{S}_{30}+\mathrm{S}_{15}=\frac{30(30+1)}{2}+\frac{15(15+1)}{2}$
$\mathrm{S}_{30}+\mathrm{S}_{15}=\frac{30 \times 31}{2}+\frac{15 \times 16}{2}$
$\mathrm{S}_{30}+\mathrm{S}_{15}=15 \times 31+15 \times 8$
$\mathrm{S}_{30}+\mathrm{S}_{15}=465+120$
$\mathrm{S}_{30}+\mathrm{S}_{15}=585$
(b) (i) $\mathrm{S}_{\mathrm{n}}=55$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$55=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$\mathrm{n}(\mathrm{n}+1)=55 \mathrm{x} 2$
$\mathrm{n}(\mathrm{n}+1)=110$
$\mathrm{n}(\mathrm{n}+1)=10(10+1)$
$\therefore \mathrm{n}=10$
(ii) $\mathrm{S}_{\mathrm{n}}=15$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$15=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$\mathrm{n}(\mathrm{n}+1)=15 \mathrm{x} 2$
$n(n+1)=30$
$\mathrm{n}(\mathrm{n}+1)=5(5+1)$
$\therefore \mathrm{n}=5$
5. Find the sum of all the first ' $n$ ' odd natural numbers.
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{a}=1, \mathrm{~d}=2$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{x} 1+(\mathrm{n}-1) 2]$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2+2 \mathrm{n}-2]$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{n}]$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\mathrm{n}^{2}$
6. Find the sum of all natural numbers between 1 and 201 which are divisible by 5 .
$=5+10+15+20+\ldots \ldots \ldots+200$
$=5(1+2+3+4+\ldots \ldots \ldots+40)$
$=5\left(\mathrm{~S}_{\mathrm{n}}\right)$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$=5\left[\frac{40(40+1)}{2}\right]$
$=5[20 \times 41]$
$=5[820]$
$=4100$
7. Find the first four terms of a sequence of which sum to $n$ terms is $n \frac{1}{2} n(7 n-1)$.
$\mathrm{S}_{\mathrm{n}}=\frac{1}{2} \mathrm{n}(7 \mathrm{n}-1)$
$\mathrm{T}_{1}=\mathrm{S}_{1}$
$\mathrm{T}_{1}=\frac{1}{2} \times 1(7 \times 1-1)$
$\mathrm{T}_{1}=\frac{1}{2}(6)$
$\mathrm{T}_{1}=3$
$\mathrm{T}_{1}+\mathrm{T}_{2}=\mathrm{S}_{2}$
$\Rightarrow \mathrm{T}_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}$
$\Rightarrow \mathrm{T}_{2}=\frac{1}{2} \times 2(7 \times 2-1)-3$
$\Rightarrow \mathrm{T}_{2}=1(14-1)-3$
$\Rightarrow \mathrm{T}_{2}=13-3$
$\Rightarrow \mathrm{T}_{2}=10$
$\mathrm{T}_{3}=\mathrm{S}_{3}-\mathrm{S}_{2}$
$\Rightarrow \mathrm{T}_{3}=\frac{1}{2} \times 3(7 \times 3-1)-13$
$\Rightarrow \mathrm{T}_{3}=\frac{3}{2}(21-1)-13$
$\Rightarrow \mathrm{T}_{3}=\frac{3}{2} \times 20-13$
$\Rightarrow \mathrm{T}_{3}=3 \times 10-13 \Rightarrow 30-13$
$\mathrm{T}_{3}=17$
$\mathrm{T}_{4}=\mathrm{S}_{4}-\mathrm{S}_{3}$
$\Rightarrow \mathrm{T}_{4}=\frac{1}{2} \mathrm{x} 4(7 \mathrm{x} 4-1)-30$
$\Rightarrow \mathrm{T}_{4}=2(28-1)-30$
$\Rightarrow \mathrm{T}_{4}=2(27)-30$
$\Rightarrow \mathrm{T}_{4}=54-30$
$\Rightarrow \mathrm{T}_{4}=24$
8. How many terms of the A.P $1,4,7, \ldots .$. are needed to make the sum 51 ?
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{\mathrm{n}}=51, \mathrm{a}=1, \mathrm{~d}=3$
$\frac{\mathrm{n}}{2}[2 \mathrm{x} 1+(\mathrm{n}-1) 3]=51$
$\frac{n}{2}[2+3 n-3]=51$
$\frac{\mathrm{n}}{2}[3 \mathrm{n}-1]=51$
$\mathrm{n}[3 \mathrm{n}-1]=102$
$3 n^{2}-n=102$
$3 n^{2}-n-102=0$
$3 n^{2}-18 n+17 n-102=0$
$3 n(n-6)+17(n-6)=0$
$(\mathrm{n}-6)+(3 \mathrm{n}+17)=0$
$(\mathrm{n}-6)=0 \Rightarrow \mathrm{n}=6$
9. Find three numbers in AP whose sum and products are respectively.
(i) 21 and 231 (ii) 36 and.

The terms of an A.P. are $-\mathrm{a}-\mathrm{d}, \mathrm{a}, \mathrm{a}+\mathrm{d}$
(i) $a-d+a+a+d=21$
$3 \mathrm{a}=21$
$\mathrm{a}=7$
$(a-d) a(a+d)=231$
$(7-d) 7(7+d)=231$
$(7-d)(7+d)=33$
$7^{2}-\mathrm{d}^{2}=33$
$49-d^{2}=33$
$-\mathrm{d}^{2}=33-49$
$-d^{2}=-16$
$\mathrm{d}^{2}=16$
$\mathrm{d}= \pm 4$
$\therefore$ The terms are $-7-4=3,7,7+4=11$
$\therefore$ The terms are $3,7,11$
(ii) $a-d+a+a+d=36$
$3 a=36$
$\mathrm{a}=12$
$(a-d) a(a+d)=1620$
$(12-d) 12(12+d)=1620$
$(12-d)(12+d)=135$
$12^{2}-\mathrm{d}^{2}=135$
$144-\mathrm{d}^{2}=135$
$-d^{2}=135-144$
$-d^{2}=-9$
$\mathrm{d}^{2}=9$
$d= \pm 3$
$\therefore$ The numbers are $-12-3=9,12,12+3=15$
$\therefore$ The numbers are $9,12,15$
10. The sum of 6 terms which form an A.P is 345 . The difference between the first and last terms is 55 . Find the terms.
$\frac{n}{2}[2 a+(n-1) d]=S_{n}$
$\frac{6}{2}[2 a+(6-1) d]=345$
$3[2 a+5 d]=345$
$6 a+15 d=345$
$2 a+5 d=115---------(1)$
$\mathrm{T}_{\mathrm{n}}-\mathrm{a}=55$
$\mathrm{a}+(\mathrm{n}-1) \mathrm{d}-\mathrm{a}=\mathrm{T}_{\mathrm{n}}$
$a+(6-1) d-a=55$
$5 \mathrm{~d}=55$
$\mathrm{d}=11$
(i) $\Rightarrow 2 \mathrm{a}+5 \mathrm{x} 11=115$
$\Rightarrow 2 \mathrm{a}+55=115$
$\Rightarrow 2 \mathrm{a}=115-55$
$\Rightarrow 2 \mathrm{a}=60$
$\Rightarrow \mathrm{a}=30$
$\therefore \quad \Rightarrow$ The terms of an A.P. $-30,41,52,63,74,85$
11. In an AP whose first term is 2 , the sum of first five terms is one fourth the sum of the next
five terms. Show that $T_{20}=-112$ find $S_{20}$
$\mathrm{a}=2, \mathrm{~S}_{5}=\frac{1}{4}\left(\mathrm{~S}_{10}-\mathrm{S}_{5}\right)$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{S}_{5}=\frac{5}{2}[2 \mathrm{x} 2+(5-1) \mathrm{d}]$
$S_{5}=\frac{5}{2}[4+4 \mathrm{~d}]$
$S_{5}=5[2+2 d]$
$S_{5}=10+10 d$
$S_{10}=\frac{10}{2}[2 \mathrm{x} 2+(10-1) \mathrm{d}]$
$S_{10}=5[4+9 d]$
$S_{10}=20+45 d$
$S_{10}-S_{5}=20+45 d-(10+10 d)$
$S_{10}-S_{5}=20+45 d-10-10 d$
$\mathrm{S}_{10}-\mathrm{S}_{5}=10+35 \mathrm{~d}$
$10+10 d=\frac{1}{4}(10+35 d)$
$40+40 d=10+35 d$
$5 \mathrm{~d}=-30$
$\mathrm{d}=-6$
$\therefore \mathrm{T}_{20}=2+(20-1)-6$
$\therefore \mathrm{T}_{20}=2+19 \mathrm{x}-6$
$\therefore \mathrm{T}_{20}=2-114$
$\therefore \mathrm{T}_{20}=-112$
$\mathrm{S}_{20}=\frac{20}{2}[2 \mathrm{x} 2+(20-1)(-6)]$
$S_{20}=10[4-114]$
$\mathrm{S}_{20}=10[-110]$
$\mathrm{S}_{20}=-1100$
12. The third term of an A.P is 8 and the ninth term of the A.P exceeds three times the third term by 2 . Find the sum of its first 19 terms.
$\mathrm{T}_{3}=8$
$a+(3-1) d=8$
$a+2 d=8$
$\mathrm{T}_{9}=3 \mathrm{~T}_{3}+2$
$a+(9-1) d=3 \times 8+2$
$a+8 d=24+2$
$a+8 d=26-----(2)$
(2) $-(1)$
$a+8 d=26$
$\frac{a+2 d=8}{6 d=18}$
$\mathrm{d}=3$
$\therefore \quad(1) \Rightarrow a+2 \times 3=8$
$\Rightarrow a+6=8$
$\Rightarrow \mathrm{a}=2$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{\mathrm{n}}=\frac{19}{2}[2 \mathrm{x} 2+(19-1) 3]$
$S_{\mathrm{n}}=\frac{19}{2}[4+18 \times 3]$
$S_{\mathrm{n}}=\frac{19}{2}[4+54]$
$\mathrm{S}_{\mathrm{n}}=\frac{19}{2}[58]$
$\mathrm{S}_{\mathrm{n}}=19 \mathrm{x} 29$
$S_{\mathrm{n}}=551$

## ILLUSTRATIVE EXAMPLES

1: In the H.P. $\frac{1}{5}, \frac{1}{3}, 1,-1---$ find $\mathrm{T}_{10}$.
$\mathrm{T}_{10}=\frac{1}{a+(n-1) d}$
$\mathrm{T}_{10}=\frac{1}{5+(10-1)(-2)}$
$\mathrm{T}_{10}=\frac{1}{5+9(-2)}$
$\mathrm{T}_{10}=\frac{1}{5-18}$
$\mathrm{T}_{10}=-\frac{1}{13}$
2: In a H.P. $\mathrm{T}_{3}=\frac{1}{7}$ and $\mathrm{T}_{7}=\frac{1}{5}$. Find $\mathrm{T}_{15}$.
In H.P. $\mathrm{T}_{3}=\frac{1}{7}, \mathrm{~T}_{7}=\frac{1}{5}$
$\therefore$ The corresponding terms in A.P. are $\mathrm{T}_{3}=7, \mathrm{~T}_{7}=5$
$\mathrm{d}=\frac{T_{p}-T_{q}}{p-q}$
$\mathrm{d}=\frac{5-7}{7-3}$
$d=\frac{-2}{4} \Rightarrow d=\frac{-1}{2}$
$\mathrm{T}_{15}=\mathrm{T}_{7}+8 \mathrm{~d}$
$\mathrm{T}_{15}=5+8 \mathrm{x} \frac{-1}{2}$
$\mathrm{T}_{15}=5-4$
$\mathrm{T}_{15}=1$
$\therefore \mathrm{T}_{15}$ of the H.P. $\mathrm{T}_{15}=1$

## Exercise 2.4

1. Which of the following are harmonic progressions?
(i) $1, \frac{1}{4}, \frac{1}{7}, \frac{1}{10} \ldots$
(ii) $1, \frac{2}{3}, \frac{1}{2}, \frac{2}{5} \ldots$ (iii) $1, \frac{1}{2}, \frac{1}{6}, \frac{1}{18} \ldots$
(iv) $1, \frac{1}{3}, \frac{1}{7}, \frac{1}{11} \ldots$
(v) $6,4,3, \ldots$
(vi) $1, \frac{1}{2}, \frac{1}{4}, \ldots$
(i) $1, \frac{1}{4}, \frac{1}{7}, \frac{1}{10} \ldots$

The reciprocals are $1,4,7,10, \ldots$
$4-1=3,7-4=3$
The reciprocals are in A.P..
$\therefore$ Harmonic progressions
(ii) $1, \frac{2}{3}, \frac{1}{2}, \frac{2}{5} \ldots$

The reciprocals are $1, \frac{3}{2}, 2, \frac{5}{2}$.
$\frac{3}{2}-1=\frac{1}{2}, 2-\frac{3}{2}=\frac{1}{2}, \frac{5}{2}-2=\frac{1}{2} \ldots$
The reciprocals are in A.P
$\therefore$ Harmonic progressions
(iii) $1, \frac{1}{2}, \frac{1}{6}, \frac{1}{18} \ldots$

The reciprocals are $1,2,6,18 \ldots$
$2-1=1,6-2=4 \ldots$

The reciprocals are not in A.P
$\therefore$ It is not a Harmonic progressions
(iv) $\frac{1}{3}, \frac{1}{7}, \frac{1}{11} \ldots$

The reciprocals are $3,7,11 \ldots$
$7-3=4,11-7=4$
The reciprocals are in A.P.
$\therefore$ Harmonic progressions
(v) $6,4,3, \ldots$

The reciprocals are $\frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \ldots$
$\frac{1}{4}-\frac{1}{6}=\frac{1}{12}, \frac{1}{3}-\frac{1}{4}=\frac{1}{12}, \ldots$.
The reciprocals are in A.P.
$\therefore$ Harmonic progressions
(vi) $1, \frac{1}{2}, \frac{1}{4}, \ldots$

The reciprocals are $1,2,4, \ldots$
$2-1=1,4-1=3, \ldots$
The reciprocals are not in A.P
$\therefore$ It is not a Harmonic progressions
2. Find
(i) $\mathrm{T}_{\mathrm{n}}$ in $\frac{1}{2}, \frac{1}{4}, \frac{1}{6} \ldots \mathrm{~T}_{\mathrm{n}}$
(ii) $\mathrm{T}_{10}$ in $\frac{1}{7}, \frac{1}{4}, 1 \ldots \mathrm{~T}_{10}$
(i) $\frac{1}{2}, \frac{1}{4}, \frac{1}{6} \ldots . \mathrm{D}_{\mathrm{m}} \mathrm{T}_{\mathrm{n}}$
$\mathrm{T}_{\mathrm{n}}=\frac{1}{a+(n-1) d}$
$\mathrm{T}_{\mathrm{n}}=\frac{1}{2+(n-1) 2}$
$\mathrm{T}_{\mathrm{n}}=\frac{1}{2+2 n-2}$
$\mathrm{T}_{\mathrm{n}}=\frac{1}{2 n}$
(ii) $\frac{1}{7}, \frac{1}{4}, 1 \ldots$. ${ }^{2} \mathrm{~m}_{10}$
$\mathrm{T}_{\mathrm{n}}=\frac{1}{a+(n-1) d}$
$\mathrm{T}_{10}=\frac{1}{7+(10-1)(-3)}$
$\mathrm{T}_{10}=\frac{1}{7+9(-3)}$
$\mathrm{T}_{10}=\frac{1}{7-27}$
$\mathrm{T}_{10}=\frac{-1}{20}$
3. In a H.P. $\mathrm{T}_{5}=\frac{1}{12}$ and $\mathrm{T}_{11}=\frac{1}{15}$, find $\mathrm{T}_{25}$.

In H.P. $\mathrm{T}_{5}=\frac{1}{12}$
$\Rightarrow$ In A.P. $\mathrm{T}_{5}=12=\mathrm{T}_{\mathrm{q}}$
In H.P. $\mathrm{T}_{11}=\frac{1}{15}$
$\Rightarrow$ In A.P. $\mathrm{T}_{11}=15=\mathrm{T}_{\mathrm{p}}$
$d=\frac{T_{p}-T_{q}}{p-q}$
$\mathrm{d}=\frac{15-12}{11-5}$
$d=\frac{3}{6}$
$\mathrm{d}=\frac{1}{2}$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$12=a+(5-1) \frac{1}{2}$
$12=a+4 x \frac{1}{2}$
$12=a+2$
$\mathrm{a}=12-2$
$\mathrm{a}=10$
$\therefore \mathrm{T}_{25}=10+(25-1) \frac{1}{2}$
$\mathrm{T}_{25}=10+24 \mathrm{x} \frac{1}{2}$
$\mathrm{T}_{25}=10+12$
$\mathrm{T}_{25}=22$
$\therefore$ In H.P. $\mathrm{T}_{25}=\frac{1}{22}$
4. In a H.P. $\mathrm{T}_{4}=\frac{1}{11}$ and $\mathrm{T}_{14}=\frac{3}{23}$, Find (i) $\mathrm{T}_{7}$ (ii) $\mathrm{T}_{19}$

In H.P. $\mathrm{T}_{4}=\frac{1}{11}$
$\Rightarrow \operatorname{In}$ A.P. $\mathrm{T}_{4}=11=\mathrm{T}_{\mathrm{q}}$
In H.P. $\mathrm{T}_{14}=\frac{3}{23}$
$\Rightarrow$ In A.P. $\mathrm{T}_{14}=\frac{23}{3}=\mathrm{T}_{\mathrm{p}}$
$\mathrm{d}=\frac{T_{p}-T_{q}}{p-q}$
$\mathrm{d}=\frac{\frac{23}{3}-11}{14-4}$
$\mathrm{d}=\frac{-\frac{-10}{3}}{10}$
$\mathrm{d}=-\frac{1}{3}$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$11=a+(4-1)\left(-\frac{1}{3}\right)$
$11=a+3 x\left(-\frac{1}{3}\right)$
$11=\mathrm{a}-1$
$\mathrm{a}=11+1$
$\mathrm{a}=12$
(i) $\mathrm{T}_{7}=12+(7-1)\left(-\frac{1}{3}\right)$
$\mathrm{T}_{7}=12+6 \mathrm{x}\left(-\frac{1}{3}\right)$
$\mathrm{T}_{7}=12-2$
$\mathrm{T}_{7}=10$
$\Rightarrow$ In an A.P. $\mathrm{T}_{7}=10$
$\therefore$ In H.P. $\mathrm{T}_{7}=\frac{1}{10}$
(ii) $\mathrm{T}_{19}=12+(19-1)\left(-\frac{1}{3}\right)$
$\mathrm{T}_{19}=12+18 \mathrm{x}\left(-\frac{1}{3}\right)$
$\mathrm{T}_{19}=12-6$
$\mathrm{T}_{19}=6$
$\Rightarrow \operatorname{In}$ A.P. $\mathrm{T}_{19}=6$
$\therefore$ In H.P. $\mathrm{T}_{19}=\frac{1}{6}$

## ILLUSTRATIVE EXAMPLES

1: Find the first 3 terms of $a$ G.P if $a=4$ and $r=2$.
$\mathrm{T}_{1}=\mathrm{a}=4$
$\mathrm{T}_{2}=\mathrm{ar}=4 \mathrm{x} 2=8$
$\mathrm{T}_{3}=\mathrm{ar}^{2}=4 \mathrm{x} 2^{2}=4 \mathrm{x} 4=16$
$\therefore$ The three terms are: $4,8,16$
2:Find the fifth term of the G.P $\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \ldots$.
$\mathrm{a}=\frac{3}{2}, \mathrm{r}=\frac{1}{2}$,
$\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$\mathrm{T}_{5}=\frac{3}{2} \mathrm{x}\left(\frac{1}{2}\right)^{5-1}$
$\mathrm{T}_{5}=\frac{3}{2} \mathrm{x}\left(\frac{1}{2}\right)^{4}$
$\mathrm{T}_{5}=\frac{3}{2} \times \frac{1}{2^{4}}$
$\mathrm{T}_{5}=\frac{3}{2} \mathrm{x} \frac{1}{16}$
$\mathrm{T}_{5}=\frac{3}{32}$
3: Which term of the G. P $2,2 \sqrt{2}, 4, \ldots$ is 32 ?
$\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$32=2 \times(\sqrt{2})^{n-1}$
$16=\left(2^{\frac{1}{2}}\right)^{n-1}$
$2^{4}=2^{\frac{n-1}{2}}$
$4=\frac{n-1}{2}$
$8=n-1$
$\mathrm{n}=8+1=9$
5: The first term of the G.P is 25 and $6^{\text {th }}$ term is 800 . Find the seventh term.
$\mathrm{T}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$800=25 \mathrm{x} \mathrm{r}^{5}$
$r^{5}=32$
$r^{5}=2^{5}$
$\therefore \mathrm{r}=2$
$\mathrm{T}_{7}=\mathrm{r} \times \mathrm{T}_{6}$
$\mathrm{T}_{7}=2 \times 800$
$\mathrm{T}_{7}=1600$

## Exercise 2.5

1. Find the common ratio in the following G.P.
(i) $-5,1, \frac{-1}{5}, \ldots$
(ii) $\sqrt{3}, 3,3 \sqrt{3}, \ldots$
(i) $-5,1, \frac{-1}{5}, \ldots$
$\mathrm{r}=\frac{1}{-5}$,
(ii) $\sqrt{3}, 3,3 \sqrt{3}, \ldots$
$\mathrm{r}=\frac{3}{\sqrt{3}}$, $=\frac{3 \sqrt{3}}{(\sqrt{3})^{2}}=\frac{3 \sqrt{3}}{3}=\sqrt{3}$
2. Do as directed.
(i) If $\mathrm{a}=1$ and $\mathrm{r}=\frac{2}{3}$ find (a) $\mathrm{T}_{\mathrm{n}}$ (b) $\mathrm{T}_{4}$
(ii) In the G.P. $729,243,81, \ldots$ find $\mathrm{T}_{7}$
(i) (a) $\mathrm{T}_{\mathrm{n}}=\mathrm{a} \cdot \mathrm{r}^{\mathrm{n}-1}$
$\mathrm{T}_{\mathrm{n}}=1 .\left(\frac{2}{3}\right)^{n-1}$
$\mathrm{T}_{\mathrm{n}}=\left(\frac{2}{3}\right)^{n-1}$
(b) $\mathrm{T}_{4}=\left(\frac{2}{3}\right)^{4-1}$
$\mathrm{T}_{4}=\left(\frac{2}{3}\right)^{3}$
$\mathrm{T}_{4}=\frac{2^{3}}{3^{3}}$
$\mathrm{T}_{4}=\frac{8}{27}$
(ii) In the G.P. $729,243,81, \ldots$ find $T_{7}$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a} \cdot \mathrm{r}^{\mathrm{n}-1}$
$\mathrm{a}=729, \mathrm{r}=\frac{243}{729}=\frac{1}{3}$
$\mathrm{T}_{7}=729 .\left(\frac{1}{3}\right)^{7-1}$
$\mathrm{T}_{7}=729 .\left(\frac{1}{3}\right)^{6}$
$\mathrm{T}_{7}=729 \cdot \frac{1^{6}}{3^{6}}$
$\mathrm{T}_{7}=729 \cdot \frac{1}{729}$
$\mathrm{T}_{7}=1$
3. Find the $12^{\text {th }}$ term of a G.P whose $5^{\text {th }}$ term is 64 and common ratio is 2 .
$\mathrm{T}_{5}=64, \mathrm{r}=2, \mathrm{~T}_{12}=$ ?
$\mathrm{T}_{\mathrm{n}}=\mathrm{a} \cdot \mathrm{r}^{\mathrm{n}-1}$
$\mathrm{T}_{5}=\mathrm{a}(2)^{5-1}$
$64=\mathrm{a}(2)^{4}$
$64=16 a$
$a=\frac{64}{16}$
$\mathrm{a}=4$
$\mathrm{T}_{12}=4 \times 2^{12-1}$
$\mathrm{T}_{12}=4 \times 2^{11}$
$\mathrm{T}_{12}=4 \times 2048$
$\mathrm{T}_{12}=8192$
4. Find the following.
(i) 10 th and 16 th terms of the G.P. $256,128,64, \ldots$
(ii) 8 th and 12 th terms of the G.P. $81,-27,9, \ldots$
(iii) 4 th and 8 th terms of the G.P. $0.008,0.04,0.2 \ldots .$.
(i) 10 th and 16 th terms of the G.P. $256,128,64, \ldots$

$$
\begin{aligned}
& \mathrm{a}=729, \mathrm{r}=\frac{128}{256}=\frac{1}{2} \\
& \mathrm{~T}_{\mathrm{n}}=\mathrm{a} \cdot \mathrm{r}^{\mathrm{n}-1} \\
& \mathrm{~T}_{10}=256 \times\left(\frac{1}{2}\right)^{10-1} \\
& \mathrm{~T}_{10}=256 \times\left(\frac{1}{2}\right)^{9} \\
& \mathrm{~T}_{10}=256 \times \frac{1^{9}}{2^{9}} \\
& \mathrm{~T}_{10}=256 \times \frac{1}{512} \\
& \mathrm{~T}_{10}=\frac{1}{2}
\end{aligned}
$$

$\mathrm{T}_{16}=256 \times\left(\frac{1}{2}\right)^{16-1}$
$\mathrm{T}_{16}=256 \times\left(\frac{1}{2}\right)^{15}$
$\mathrm{T}_{16}=256 \times \frac{1}{2^{15}}$
$\mathrm{T}_{16}=256 \times \frac{1}{256 \times 2^{7}}$
$\mathrm{T}_{16}=\frac{1}{128}$
Or
$\mathrm{T}_{16}=\mathrm{T}_{10} \mathrm{X} r^{6}$
$\mathrm{T}_{16}=\frac{1}{2} \mathrm{x}\left(\frac{1}{2}\right)^{6}$
$\mathrm{T}_{16}=\frac{1}{2^{7}}$
$\mathrm{T}_{16}=\frac{1}{128}$
(ii) 8 th and 12 th terms of the G.P. $81,-27,9, \ldots$
$\mathrm{a}=81$,
$\mathrm{r}=\frac{-27}{81}=\frac{-1}{3}$
$\mathrm{T}_{8}=81 .\left(\frac{-1}{3}\right)^{8-1}$
$\mathrm{T}_{8}=81 .\left(\frac{-1}{3}\right)^{7}$
$\mathrm{T}_{8}=81 \cdot \frac{-1}{3^{7}}$
$\mathrm{T}_{8}=3^{4} \cdot \frac{-1}{3^{7}}$
$\mathrm{T}_{8}=\frac{-1}{3^{3}}$
$\mathrm{T}_{8}=\frac{-1}{27}$
$\mathrm{T}_{12}=81 .\left(\frac{-1}{3}\right)^{12-1}$
$\mathrm{T}_{8}=81 .\left(\frac{-1}{3}\right)^{11}$
$\mathrm{T}_{8}=81 \cdot \frac{-1}{3^{11}}$
$\mathrm{T}_{8}=3^{4} \cdot \frac{-1}{3^{11}}$
$\mathrm{T}_{8}=\frac{-1}{3^{7}}$
$\mathrm{T}_{8}=\frac{-1}{2187}$
or
$\mathrm{T}_{12}=T_{8} \mathrm{xr} r^{4}$
$\mathrm{T}_{12}=\frac{-1}{27}\left(\frac{-1}{3}\right)^{4}$
$\mathrm{T}_{12}=\frac{-1}{27} \mathrm{x} \frac{1}{81}$
$\mathrm{T}_{12}=\frac{-1}{2187}$
(iii) 4th and 8 th terms of the G.P. $0.008,0.04,0.2 \ldots .$.
$\mathrm{a}=0.008=\frac{8}{1000}=\left(\frac{1}{5}\right)^{3}, r=\frac{0.04}{0.008}=\frac{40}{8}=5$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a} . \mathrm{r}^{\mathrm{n}-1}$
$\mathrm{T}_{4}=\left(\frac{1}{5}\right)^{3} \times 5^{4-1}$
$\mathrm{T}_{4}=\frac{1}{5^{3}} \times 5^{3}$
$\mathrm{T}_{4}=1$
$\mathrm{T}_{8}=\left(\frac{1}{5}\right)^{3} \cdot 5^{7}$
$\mathrm{T}_{8}=\frac{1}{5^{3}} \times 5^{7}$
$\mathrm{T}_{8}=5^{4}$
$\mathrm{T}_{8}=625$
or
$\mathrm{T}_{8}=\mathrm{T}_{4} . \mathrm{r}^{4}$
$\mathrm{T}_{8}=1.5^{4}$
$\mathrm{T}_{8}=625$
5. Find the last term of the following sequence:.
(i) $2,4,8, \ldots$ to 9 terms (ii) $4,4^{2}, 4^{3} \ldots$ to 2 n terms
(iii) $2,3,4 \frac{1}{2}, \ldots$ to 6 terms
(iv) $\mathrm{x}, 1, \frac{1}{\mathrm{x}}, \ldots$ to 30 terms
(i) $2,4,8, \ldots$ to 9 terms
$\mathrm{a}=2, \mathrm{r}=\frac{4}{2}=2$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a} . \mathrm{r}^{\mathrm{n}-1}$
$\mathrm{T}_{9}=2.2^{9-1}$
$\mathrm{T}_{9}=2^{9}$
$\mathrm{T}_{9}=512$
(ii) $4,4^{2}, 4^{3}$. . to $2 n$ terms
$\mathrm{a}=4, \mathrm{r}=\frac{4^{2}}{4}=4$
$\mathrm{T}_{2 \mathrm{n}}=4.4^{2 \mathrm{n}-1}$
$\mathrm{T}_{2 \mathrm{n}}=4^{2 \mathrm{n}}$
(iii) $2,3,4 \frac{1}{2}, \ldots$ to 6 terms
$\mathrm{a}=2, \mathrm{r}=\frac{3}{2}$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a} . \mathrm{r}^{\mathrm{n}-1}$
$\mathrm{T}_{6}=2 .\left(\frac{3}{2}\right)^{6-1}$
$\mathrm{T}_{6}=2 .\left(\frac{3}{2}\right)^{5}$
$\mathrm{T}_{6}=2 \cdot \frac{3^{5}}{2^{5}}$
$\mathrm{T}_{6}=\frac{2 \times 243}{32}$
$\mathrm{T}_{6}=\frac{243}{16}$
(iv) $\mathrm{x}, 1, \frac{1}{\mathrm{x}}, \ldots$ to 30 terms
$\mathrm{a}=\mathrm{x}, \mathrm{r}=\frac{1}{\mathrm{x}}$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a} \cdot \mathrm{r}^{\mathrm{n}-1} \mathrm{x}$
$\mathrm{T}_{30}=\mathrm{x} \cdot\left(\frac{1}{\mathrm{x}}\right)^{30-1}$
$\mathrm{T}_{30}=\mathrm{x} .\left(\frac{1}{\mathrm{x}}\right)^{29}$
$\mathrm{T}_{30}=\frac{\mathrm{x}}{\mathrm{x}^{29}}$
$\mathrm{T}_{30}=\frac{1}{\mathrm{x}^{28}}$
6. Find the G.P if $\mathrm{T}_{5}: \mathrm{T}_{10}=32: 1$ and $\mathrm{T}_{7}=\frac{1}{32}$.
$\mathrm{T}_{5}: \mathrm{T}_{10}=32: 1$
$\frac{\mathrm{T}_{10}}{\mathrm{~T}_{5}}=\frac{1}{32}$
$\frac{a \cdot r^{10-1}}{\text { a.r }}=\frac{1}{32}$
$\frac{r^{9}}{r^{4}}=\frac{1}{32}$
$r^{5}=\frac{1}{2^{5}}$
$r=\frac{1}{2}$
$\mathrm{T}_{7}=\frac{1}{32}$
a. $\left(\frac{1}{2}\right)^{7-1}=\frac{1}{32}$
a. $\frac{1}{2^{6}}=\frac{1}{32}$
$a=\frac{64}{32}$
$a=2$
$\mathrm{a}=2, \mathrm{~T}_{2}=\mathrm{a} . \mathrm{r}=1 ; \mathrm{T}_{3}=\mathrm{T}_{2} \cdot \mathrm{r}=\frac{1}{2} ; \mathrm{T}_{4}=\mathrm{T}_{3} \cdot \mathrm{r}=\frac{1}{4} ; \mathrm{T}_{5}=\frac{1}{8} ; \mathrm{T}_{6}=\frac{1}{16}$
$\therefore$ గుణిలeత్తర סృలఢి 2, 1, $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}$
7. The half life period of a certain radioactive material is 1 hour. If the initial sample weighed 500 gm , find the mass of the sample remaining at the end of $5^{\text {th }}$ hour?
$\mathrm{a}=500, \mathrm{r}=\frac{1}{2}, \mathrm{n}=6$ [ After 5 hours number of terms are to be 6 including first term]
$\mathrm{T}_{\mathrm{n}}=\mathrm{a} . \mathrm{r}^{\mathrm{n}-1}$
$\mathrm{T}_{5}=500 .\left(\frac{1}{2}\right)^{6-1}$
$\mathrm{T}_{5}=500 .\left(\frac{1}{2}\right)^{5}$
$\mathrm{T}_{5}=500 \cdot \frac{1}{2^{5}}$
$\mathrm{T}_{5}=500 \cdot \frac{1}{32}$
$\mathrm{T}_{5}=\frac{500}{32}$
$\mathrm{T}_{5}=15 \mathrm{Gram}$
8. Which term of the sequence $3,6,12, \ldots$ is 1536 ?
$\mathrm{a}=3, \mathrm{r}=\frac{6}{3}=2, \mathrm{~T}_{\mathrm{n}}=1536$
a. $\mathrm{r}^{\mathrm{n}-1}=\mathrm{T}_{\mathrm{n}}$
$3.2^{\mathrm{n}-1}=1536$
$2^{\mathrm{n}-1}=\frac{1536}{3}$
$2^{\mathrm{n}-1}=512$
$2^{\mathrm{n}-1}=2^{9}$
$\mathrm{n}-1=9$
$\mathrm{n}=10$
9. If the $4^{\text {th }}$ and $8^{\text {th }}$ terms of a GP are 24 and 384 respectively, find the first term and common ratio.
$\mathrm{T}_{4}=24 ; \quad \mathrm{T}_{8}=384 \frac{\mathrm{~T}_{8}}{\mathrm{~T}_{4}}=\frac{384}{24}$
$\frac{a \cdot r^{8-1}}{a \cdot r^{4-1}}=16$
$\frac{r^{7}}{r^{3}}=16$
$r^{4}=2^{4}$
$r=2$
a. $\mathrm{r}^{\mathrm{n}-1}=\mathrm{T}_{\mathrm{n}}$
a. $2^{4-1}=24$
a. $2^{3}=24$
$\mathrm{a}=\frac{24}{8}$
$a=3$
10. Find the G.P. in which.
(i) The $10^{\text {th }}$ term is 320 and $6^{\text {th }}$ term is 20
(ii) $2^{\text {nd }}$ term is $\sqrt{6}$ and $6^{\text {th }}$ term is $9 \sqrt{6}$
(i) The $10^{\text {th }}$ term is 320 and $6^{\text {th }}$ term is 20
$\mathrm{T}_{10}=320 ; \mathrm{T}_{6}=20$
$\frac{\mathrm{T}_{10}}{\mathrm{~T}_{6}}=\frac{320}{20}$
$\frac{a \cdot r^{10-1}}{a_{r} .^{6-1}}=16$
$\frac{\mathrm{r}^{9}}{\mathrm{r}^{5}}=16$
$r^{4}=2^{4}$
$r=2$
a. $\mathrm{r}^{\mathrm{n}-1}=\mathrm{T}_{\mathrm{n}}$
a. $2^{6-1}=20$
a. $2^{5}=20$
$\mathrm{a}=\frac{20}{32}$
$\mathrm{a}=\frac{5}{8}$
The G.P. is $-\frac{5}{8}, \frac{5}{8} \times 2=\frac{5}{4}, \frac{5}{4} \times 2=\frac{5}{2} \ldots$
$\frac{5}{8}, \frac{5}{4}, \frac{5}{2}$.
(ii) $2^{\text {nd }}$ term is $\sqrt{6}$ and $6^{\text {th }}$ term is $9 \sqrt{6}$
$\mathrm{T}_{6}=9 \sqrt{6} ; \mathrm{T}_{2}=\sqrt{6}$
$\frac{\mathrm{T}_{6}}{\mathrm{~T}_{2}}=\frac{9 \sqrt{6}}{\sqrt{6}}$
$\frac{a \cdot r^{6-1}}{a \cdot r^{2-1}}=9$
$\frac{r^{5}}{r}=9$
$r^{4}=3^{2}$
$r^{2}=3$
$r=\sqrt{3}$
a. $\mathrm{r}^{\mathrm{n}-1}=\mathrm{T}_{\mathrm{n}}$
a. $(\sqrt{3})^{2-1}=\sqrt{6}$
a. $\sqrt{3}=\sqrt{6}$
$a=\frac{\sqrt{6}}{\sqrt{3}}$
$\mathrm{a}=\sqrt{2}$
The G.P. is $-\sqrt{2}, \sqrt{2} x \sqrt{3}=\sqrt{6}, \quad \sqrt{6} x \sqrt{3}=\sqrt{12}=2 \sqrt{3} \ldots$
$\sqrt{2}, \sqrt{6}, 2 \sqrt{3}, \ldots$.

## ILLUSTRATIVE EXAMPLES

1: Find the sum of first 6 terms of the G.P 3, 6, 12, ........
$\mathrm{a}=3, \mathrm{r}=2, \mathrm{n}=6$
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\frac{\mathrm{r}^{\mathrm{n}}-1}{\mathrm{r}-1}\right)$
$S_{6}=3\left(\frac{2^{6}-1}{2-1}\right)$
$\mathrm{S}_{6}=3\left(\frac{64-1}{1}\right)$
$S_{6}=3\left(\frac{63}{1}\right)=3 \times 63$
$\mathrm{S}_{6}=189$
2: How many terms of the series $1+4+16+\ldots$. make the sum 1,365 ?
$\mathrm{a}=1, \mathrm{r}=4, \mathrm{n}=? \mathrm{~S}_{\mathrm{n}}=1365$
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\frac{\mathrm{r}^{\mathrm{n}}-1}{\mathrm{r}-1}\right)$
$1365=1\left(\frac{4^{\mathrm{n}}-1}{4-1}\right)$
$1365=\frac{4^{\mathrm{n}}-1}{3}$
$4095=4^{\mathrm{n}}-1$
$4^{n}=4096$
$4^{n}=4^{6}$
$\therefore \mathrm{n}=6$
3: Find the sum to infinity of the geometric series $2+\frac{2}{3}+\frac{2}{9}+\ldots$.
$\mathrm{a}=2, \mathrm{r}=\frac{1}{3}, \mathrm{n}=? \mathrm{~S}_{\infty}=$ ?
$S_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}$
$S_{\infty}=\frac{2}{1-\frac{1}{3}}$
$S_{\infty}=\frac{2}{\frac{2-1}{3}}$
$S_{\infty}=\frac{2^{2}}{\frac{2}{3}} \Rightarrow S_{\infty}=2 x \frac{3}{2}=3$
4: If the third term of a G.P is 12 and its sixth term is 96 , find the sum of 9 terms
$\mathrm{T}_{3}=12, \mathrm{~T}_{6}=96$
$\frac{\mathrm{T}_{3}}{\mathrm{~T}_{6}}=\frac{12}{96}$
$\frac{\mathrm{ar}^{2}}{\mathrm{ar}^{5}}=\frac{12}{96}$
$\frac{\mathrm{r}^{2}}{\mathrm{r}^{5}}=\frac{1}{8}$
$\frac{1}{\mathrm{r}^{3}}=\frac{1}{2^{3}}$
$r^{3}=2^{3}$
$r=2$
$\mathrm{T}_{3}=12$
$\mathrm{ax} 2^{2}=12$
$4 a=12$
$\mathrm{a}=3$
$\mathrm{S}_{\mathrm{n}}=a\left(\frac{r^{n}-1}{r-1}\right)$
$\mathrm{S}_{9}=3\left(\frac{2^{9}-1}{2-1}\right)$
$\mathrm{S}_{9}=3\left(\frac{512-1}{1}\right)$
$\mathrm{S}_{9}=3(511)$
$\mathrm{S}_{9}=1533$
5: Sum of three terms in a G.P is 31 and their product is 125 . Find the numbers.
$\frac{a}{r} \times$ a $\times$ ar $=125$
$\mathrm{a}^{3}=125$
$\mathrm{a}=5$
$\frac{a}{r}+a+a r=31$
$5+5 \mathrm{r}+5 \mathrm{r}^{2}=31 \mathrm{r}$
$5 r^{2}-26 r+5=0$
$5 r^{2}-25 r-r+5=0$
$5 \mathrm{r}(\mathrm{r}-5)-1(\mathrm{r}-5)=0$
$(5 \mathrm{r}-1)(\mathrm{r}-5)=0$
$\Rightarrow 5 \mathrm{r}=1$ or $\mathrm{r}=5$
$\Rightarrow \mathrm{r}=\frac{1}{5}$ or $\mathrm{r}=5$
$\therefore$ The terms of G.P.: $\frac{5}{\frac{1}{5}}, 5,5 \times \frac{1}{5} \operatorname{Or} \frac{5}{5}, 5,5 \times 5$
$\therefore$ The terms of G.P.: $25,5,1$ Or $1,5,25$

## Exercise 2.6

1. Find the sum of the following geometric series.
(i) $1+2+3+4+\ldots$ up to 10 terms
(ii) $1+\frac{1}{3}+\frac{1}{9}+\ldots$ up to $\infty$ terms
(i) $1+2+3+4+\ldots$ up to 10 terms
$\mathrm{a}=1, \mathrm{r}=\frac{2}{1}=2, \mathrm{n}=10$
$S_{n}=a\left(\frac{r^{n}-1}{r-1}\right)$
$S_{10}=1\left(\frac{2^{10}-1}{2-1}\right)$
$\mathrm{S}_{10}=1\left(\frac{2^{10}-1}{2-1}\right)$
$\mathrm{S}_{10}=\left(\frac{1024-1}{1}\right)$
$\mathrm{S}_{10}=1023$
(ii) $1+\frac{1}{3}+\frac{1}{9}+\ldots$ up to $\infty$
$\mathrm{a}=1, \mathrm{r}=\frac{\frac{1}{9}}{\frac{1}{3}}=\frac{3}{9}=\frac{1}{3} ; \mathrm{n}=\infty$
$\mathrm{S}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}$
$\mathrm{S}_{\infty}=\frac{1}{1-\frac{1}{3}}$
$S_{\infty}=\frac{1}{\frac{2}{3}}$
$S_{\infty}=\frac{3}{2}$
Find the first term of a G.P in which S
2. Find the first term of a G.P in which $\mathrm{S}_{8}=510$ and $\mathrm{r}=2$.
$\mathrm{a}\left(\frac{\mathrm{r}^{\mathrm{n}}-1}{\mathrm{r}-1}\right)=\mathrm{S}_{\mathrm{n}}$
$a\left(\frac{2^{8}-1}{2-1}\right)=510$
$\mathrm{a}\left(\frac{256-1}{1}\right)=510$
$255 a=510$
$\mathrm{a}=\frac{510}{255}$
$a=2$
3. Find the sum.
(i) $1+2+4+\ldots+512$
(ii) $\frac{1}{2}+\frac{1}{4}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots+\frac{1}{2^{10}}$
(i) $1+2+4+\ldots+512$
$\mathrm{a}=1, \mathrm{r}=2, \mathrm{~T}_{\mathrm{n}}=512$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a} \cdot \mathrm{r}^{\mathrm{n}-1}$
$512=1.2^{\mathrm{n}-1}$
$2^{9}=2^{\mathrm{n}-1}$
$\mathrm{n}-1=9$
$\mathrm{n}=10$
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\frac{\mathrm{r}^{\mathrm{n}}-1}{\mathrm{r}-1}\right)$
$\mathrm{S}_{10}=1\left(\frac{2^{10}-1}{2-1}\right)$
$\mathrm{S}_{10}=\left(\frac{1024-1}{1}\right)$
$\mathrm{S}_{10}=1023$
(ii) $\frac{1}{2}+\frac{1}{4}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots+\frac{1}{2^{10}}$
$\mathrm{a}=\frac{1}{2}, \mathrm{r}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{2}, \mathrm{n}=10$
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\frac{1-\mathrm{r}^{\mathrm{n}}}{1-\mathrm{r}}\right)$
$\mathrm{S}_{10}=\frac{1}{2}\left(\frac{1-\left(\frac{1}{2}\right)^{10}}{1-\frac{1}{2}}\right)$
$\mathrm{S}_{10}=\frac{1}{2}\left(\frac{1-\frac{1}{2^{10}}}{\frac{1}{2}}\right)$
$\mathrm{S}_{10}=\frac{2}{1} \mathrm{x} \frac{1}{2}\left(\frac{2^{10}-1}{2^{10}}\right)$
$\mathrm{S}_{10}=1\left(\frac{1024-1}{1024}\right)$
$\mathrm{S}_{10}=\frac{1023}{1024}$
4. How many terms of the series $2+4+8+\ldots \ldots$....make the sum 1022 ?
$\mathrm{a}=2, \mathrm{r}=2, \mathrm{~S}_{\mathrm{n}}=1022$
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\frac{\mathrm{r}^{\mathrm{n}}-1}{\mathrm{r}-1}\right)$
$2\left(\frac{2^{\mathrm{n}}-1}{2-1}\right)=1022$
$2\left(\frac{2^{n}-1}{1}\right)=1022$
$2^{\mathrm{n}+1}-2=1022$
$2^{\mathrm{n}+1}=1024$
$2^{\mathrm{n}+1}=2^{10}$
$\mathrm{n}+1=10$
$\mathrm{n}=9$
5. Find.
(i) $\mathrm{S}_{2}: \mathrm{S}_{4}$ for the series $5+10+20+\ldots \ldots$
(ii) $\mathrm{S}_{4}: \mathrm{S}_{8}$ for the series $4+12+36+$.
(i) $\mathrm{S}_{2}: \mathrm{S}_{4}$ for the series $5+10+20+\ldots \ldots$
$\frac{S_{2}}{S_{4}}=\frac{a\left(\frac{r^{2}-1}{r-1}\right)}{a\left(\frac{r^{4}-1}{r-1}\right)}$
$\frac{S_{2}}{S_{4}}=\frac{r^{2}-1}{r^{4}-1}$
$\frac{S_{2}}{S_{4}}=\frac{r^{2}-1}{\left(r^{2}+1\right)\left(r^{2}-1\right)}$
$\frac{S_{2}}{S_{4}}=\frac{1}{\left(r^{2}+1\right)}$
$\frac{S_{2}}{S_{4}}=\frac{1}{\left(2^{2}+1\right)}$
$\frac{S_{2}}{S_{4}}=\frac{1}{4+1}$
$\frac{S_{2}}{S_{4}}=\frac{1}{5}$
$S_{2}: S_{4}=1: 5$
Alternate:
$\mathrm{S}_{\mathrm{n}}: \mathrm{S}_{2 \mathrm{n}}=1: 1+\mathrm{r}^{\mathrm{n}}$
$\mathrm{S}_{2}: \mathrm{S}_{4}=1: 1+2^{2}$
$S_{2}: S_{4}=1: 1+4$
$\mathrm{S}_{2}: \mathrm{S}_{4}=1: 5$
(ii) $\mathrm{S}_{4}: \mathrm{S}_{8}$ for the series $4+12+36+\ldots \ldots$.
$\frac{S_{4}}{S_{8}}=\frac{a\left(\frac{r^{4}-1}{r-1}\right)}{a\left(\frac{r^{8}-1}{r-1}\right)}$
$\frac{S_{4}}{S_{8}}=\frac{r^{4}-1}{r^{8}-1}$
$\frac{S_{4}}{S_{8}}=\frac{r^{4}-1}{\left(r^{4}+1\right)\left(r^{4}-1\right)}$
$\frac{S_{4}}{S_{8}}=\frac{1}{\left(r^{4}+1\right)}$
$\frac{S_{4}}{S_{8}}=\frac{1}{\left(3^{4}+1\right)}$
$\frac{S_{4}}{S_{8}}=\frac{1}{81+1}$
$\frac{S_{4}}{S_{8}}=\frac{1}{82}$
$\mathrm{S}_{4}: \mathrm{S}_{8}=1: 82$
Alternate:
$\mathrm{S}_{\mathrm{n}}: \mathrm{S}_{2 \mathrm{n}}=1: 1+\mathrm{r}^{\mathrm{n}}$
$S_{4}: S_{8}=1: 1+3^{4}$
$S_{2}: S_{4}=1: 1+81$
$\mathrm{S}_{2}: \mathrm{S}_{4}=1: 82$
6. Find the G.P if (i) $\mathrm{S}_{6}: \mathrm{S}_{3}=126: 1$ and $\mathrm{T}_{4}=125$ (ii) $\mathrm{S}_{10}: \mathrm{S}_{5}=33: 32$ and $\mathrm{T}_{5}=64$
(i) $\mathrm{S}_{6}: \mathrm{S}_{3}=126: 1$ దుత్తు $\mathrm{T}_{4}=125$
$\frac{S_{6}}{S_{3}}=\frac{a\left(\frac{r^{6}-1}{r-1}\right)}{a\left(\frac{r^{3}-1}{r-1}\right)}$
$\frac{126}{1}=\frac{r^{6}-1}{r^{3}-1}$
$126=\frac{\left(\mathrm{r}^{3}+1\right)\left(\mathrm{r}^{3}-1\right)}{\left(\mathrm{r}^{3}-1\right)}$
$126=\left(r^{3}+1\right)$
$r^{3}=126-1$
$r^{3}=125$
$r^{3}=5^{3}$
$r=5$
a. $.5^{4-1}=125$
a. $5^{3}=125$
$\mathrm{a}=\frac{125}{125}$
$a=1$
$\therefore$ The G.P. is $-1,5,25,125 \ldots .$.
(ii) $\mathrm{S}_{10}: \mathrm{S}_{5}=33: 32$ దుత్తు $\mathrm{T}_{5}=64$
$\frac{S_{10}}{S_{5}}=\frac{a\left(\frac{r^{10}-1}{r-1}\right)}{a\left(\frac{r^{5}-1}{r-1}\right)}$
$\frac{33}{32}=\frac{r^{10}-1}{r^{5}-1}$
$\frac{33}{32}=r^{5}+1$
$r^{5}=\frac{33}{32}-1$
$r^{5}=\frac{33-32}{32}$
$\mathrm{r}^{5}=\frac{1}{32}$
$\mathrm{r}^{5}=\left(\frac{1}{2}\right)^{5}$
$\mathrm{r}=\frac{1}{2}$
$a\left(\frac{1}{2}\right)^{5-1}=64$
a $\left(\frac{1}{2}\right)^{4}=64$
$\frac{\mathrm{a}}{16}=64$
$a=64 \times 16$
$a=1024$
$\therefore$ The G.P. is $-1024,512,256,128,64 \ldots$.
7. The first term of an infinite geometric series is 6 and its sum is 8 . Find the G.P.
$a=6, S_{\infty}=8$
$S_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}$
$8=\frac{6}{1-r}$
$1-r=\frac{6}{8}$
$\mathrm{r}=1-\frac{3}{4}$
$\mathrm{r}=\frac{1}{4}$
$\therefore$ The G.P. is $-6,6 x_{\frac{1}{4}}^{\frac{1}{2}}=\frac{3}{2}, \frac{3}{2} \times \frac{1}{4}=\frac{3}{8} \ldots$
$\therefore$ The G.P.is $-6, \frac{3}{2}, \frac{3}{8} \ldots$
Find 3 terms in G.P whose sum and product respectively are
8. Find 3 terms in G.P whose sum and product respectively are
(i) 7 and 8
(ii) 21 and 216
(iii) 19 and.
(i) 7 and 8

Let the three terms of G.P. are $-\frac{a}{r}$, $a$, ar
$\frac{\mathrm{a}}{\mathrm{r}} \times \mathrm{axar}=8$
$\mathrm{a}^{3}=2^{3}$
a $=2$-------
$\frac{2}{\mathrm{r}}+2+2 \mathrm{r}=7$
$2+2 \mathrm{r}+2 \mathrm{r}^{2}=7 \mathrm{r}$
$2 r^{2}-5 r+2=0$
$2 \mathrm{r}^{2}-4 \mathrm{r}-\mathrm{r}+2=0$
$2 \mathrm{r}(\mathrm{r}-2)-1(\mathrm{r}-2)=0$
$(r-2)(2 r-1)=0$
$\mathrm{r}=2$ and $\mathrm{r}=\frac{1}{2}$
$\therefore$ Three terms are $-\frac{2}{2}, 2,2 \times 2 \Rightarrow 1,2,4 \ldots$ or $4,2,1$
(ii) 21 and 216

Let the three terms of G.P. are $-\frac{a}{r}$, a, ar
$\frac{a}{r} \times$ a x ar $=216$
$a^{3}=6^{3}$
$a=6$------- (1)
$\frac{6}{r}+6+6 \mathrm{r}=21$
$6+6 r+6 r^{2}=21 r$
$6 r^{2}-15 r+6=0$
$2 r^{2}-5 r+2=0$
$2 r^{2}-5 r+2=0$
$2 r^{2}-4 \mathrm{r}-\mathrm{r}+2=0$
$2 \mathrm{r}(\mathrm{r}-2)-1(\mathrm{r}-2)=0$
$(r-2)(2 r-1)=0$
$\mathrm{r}=2$ and $\mathrm{r}=\frac{1}{2}$
$\therefore$ Three terms are $-\frac{6}{2}, 6,6 \times 2 \Rightarrow 3,6,12 \ldots$ or $12,6,3$
(iii) 19 and 216
$\frac{a}{r} \times \mathrm{ax}$ ar $=216$
$a^{3}=6^{3}$
$a=6-----(1)$
$\frac{6}{r}+6+6 \mathrm{r}=19$
$6+6 \mathrm{r}+6 r^{2}=19 \mathrm{r}$
$6 r^{2}-13 \mathrm{r}+6=0$
$6 r^{2}-9 \mathrm{r}-4 \mathrm{r}+6=0$
$3 \mathrm{r}(2 r-3)-2(2 \mathrm{r}-3)=0$
$(2 r-3)(3 \mathrm{r}-2)=0$
$(2 \mathrm{r}-3)=0$ or $(3 \mathrm{r}-2)=0$
$\mathrm{r}=\frac{3}{2}$ or $\mathrm{r}=\frac{2}{3}$
$\therefore$ Three terms are $-6 x \frac{2}{3}, 6,6 x \frac{3}{2} \Rightarrow 4,6,9 \ldots$ or $9,6,4$

## SSLC - Mathematics Progression

9. A person saved every year half as much he saved the previous year. If he totally saved Rs 19,375 in 5 years, how much did he save the first year?
$\mathrm{a}=?, \mathrm{r}=\frac{1}{2}, \mathrm{n}=5, \mathrm{~S}_{5}=19,375$
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\frac{1-\mathrm{r}^{\mathrm{n}}}{1-\mathrm{r}}\right)$
$\mathrm{S}_{5}=\mathrm{a}\left[\frac{1-\left(\frac{1}{2}\right)^{5}}{1-\frac{1}{2}}\right]$
$19,375=a\left[\frac{1-\frac{1}{32}}{\frac{1}{2}}\right]$
$19,375=2 \mathrm{a}\left[\frac{32-1}{32}\right]$
$19,375=\mathrm{a}\left[\frac{31}{16}\right]$
$16 \mathrm{x} 19,375=31 \mathrm{a}$
$\mathrm{a}=\frac{16 \times 19,375}{31}$
$a=10,000$

## ILLUSTRATIVE EXAMPLES

1: Find the arithmetic mean between 7 and 13.
Sol:: $\mathrm{A}=\frac{a+b}{2}$
$\mathrm{A}=\frac{7+13}{2}$
$\mathrm{A}=\frac{20}{2}$
$\mathrm{A}=10$
2: Find ' $x$ ' if $(p-q), x,(p+q)$ are in A.P.
Sol: $\mathrm{A}=\frac{a+b}{2}$
$\mathrm{x}=\frac{(p-q)+(p+q)}{2}$
$\mathrm{x}=\frac{2 p}{2} \Rightarrow \mathrm{x}=p$

## ILLUSTRAYIVE EXAMPLES

1: Find the GM between 4 and 36.
Sol: $\mathrm{G}=\sqrt{a b}$
$\mathrm{G}=\sqrt{4 \times 36}$
$\mathrm{G}=\sqrt{144}$
$\mathrm{G}=12$
2: Find $x$ if $6, x+2,54$ are in G.P.
Sol: $\mathrm{G}=\sqrt{a b}$
$\mathrm{x}+2=\sqrt{6 \times 54}$
$x+2=\sqrt{324}$
$\mathrm{x}+2=18$
$\mathrm{x}=18-2$
$\mathrm{x}=16$

## Exercise 2.7

1. Find the AM, GM and HM between.
(i) 12 దుత్తు 30
(ii) $\frac{1}{2}$ దుత్తు $\frac{1}{8}$ (iii) -8 దుత్తు -42
(iv) 9 దుత్తు 18
(i) 12 and 30

$$
\text { A.M.: } A=\frac{a+b}{2}=\frac{12+30}{2}=\frac{42}{2}=21
$$

G.M.: $G=\sqrt{\mathrm{ab}}=\sqrt{12 \times 30}=\sqrt{360}=6 \sqrt{10}$
H.M.: $\mathrm{H}=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}=\frac{2 \times 12 \times 30}{12+3 \mathrm{o}}=\frac{720}{42}=\frac{120}{7}$
(ii) $\frac{1}{2}$ and $\frac{1}{8}$
A.M.: $A=\frac{a+b}{2}=\frac{\frac{1}{2}+\frac{1}{8}}{2}=\frac{\frac{4+1}{8}}{2}=\frac{\frac{5}{8}}{2}=\frac{5}{16}$
G.M.: $\mathrm{G}=\sqrt{\mathrm{ab}}=\sqrt{\frac{1}{2} \mathrm{x} \frac{1}{8}}=\sqrt{\frac{1}{16}}=\frac{1}{\sqrt{16}}=\frac{1}{4}$
H.M.: $\quad \mathrm{H}=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}=\frac{2 \mathrm{x} \frac{1}{2} \mathrm{x} \frac{1}{8}}{\frac{1}{2}+\frac{1}{8}}=\frac{\frac{1}{8}}{\frac{5}{8}}=\frac{1}{8} \times \frac{8}{5}=\frac{1}{5}$
(iii) -8 and -14
A.M.: $A=\frac{a+b}{2}=\frac{-8-42}{2}=\frac{-50}{2}=-25$
G.M.: $G=\sqrt{a b}=\sqrt{-8 x(-42)}=\sqrt{336}=\sqrt{16 \times 21}=4 \sqrt{21}$
H.P.: $\quad \mathrm{H}=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}=\frac{2(-8)(-42)}{-8-42}=\frac{672}{-50}=\frac{-336}{25}$
(iv) 9 and 18
A.M.: $A=\frac{a+b}{2}=\frac{9+18}{2}=\frac{27}{2}$
G.M.: $G=\sqrt{\mathrm{ab}}=\sqrt{9 \times 18}=\sqrt{142}=\sqrt{81 \mathrm{x} 2}=9 \sqrt{2}$
H.M.: $\quad \mathrm{H}=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}=\frac{2(9)(18)}{9+18}=\frac{324}{27}=12$
2. Find $x$, if $5,8, x$ are in H.P.
$H=\frac{2 a b}{a+b}$
$8=\frac{2(5)(x)}{5+x} \Rightarrow 8=\frac{10 x}{5+x} \Rightarrow 8(5+x)=10 x$
$\Rightarrow 40+8 x=10 x \Rightarrow 2 x=40 \Rightarrow x=20$
3. Find $x$, if the following are in A.P.
(i) $5,(\mathrm{x}-1), 0$ (ii) $(\mathrm{a}+\mathrm{b})^{2}, \mathrm{x},(\mathrm{a}-\mathrm{b})^{2}$
(i) $5,(x-1), 0$
$\mathrm{A}=\frac{\mathrm{a}+\mathrm{b}}{2} \Rightarrow(\mathrm{x}-1)=\frac{5+0}{2}$
$\Rightarrow \mathrm{x}-1=\frac{5}{2}$
$\Rightarrow \mathrm{x}=\frac{5}{2}+1$
$\Rightarrow x=\frac{5+2}{2}=\frac{7}{2}$
(ii) $(a+b)^{2}, x,(a-b)^{2}$
$\mathrm{A}=\frac{\mathrm{a}+\mathrm{b}}{2}$
$\mathrm{x}=\frac{(\mathrm{a}+\mathrm{b})^{2}+(\mathrm{a}-\mathrm{b})^{2}}{2}$
$x=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}+\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab}}{2}$
$x=\frac{2 a^{2}+2 b^{2}}{2}$
$\mathrm{x}=\mathrm{a}^{2}+\mathrm{b}^{2}$
4. The product of two numbers is 119 and the ir $A M$ is 12 . Find the numbers.
$\mathrm{ab}=119, \frac{\mathrm{a}+\mathrm{b}}{2}=12$
$\frac{\mathrm{a}+\mathrm{b}}{2}=12 \Rightarrow \mathrm{a}+\mathrm{b}=24$
$\Rightarrow \mathrm{b}=24-\mathrm{a}$
$\mathrm{ab}=119$
$\mathrm{a}(24-\mathrm{a})=119$
$24 a-a^{2}=119$
$a^{2}-24 a+119=0$
$a^{2}-17 a-7 a+119=0$
$a(a-17)-7(a-17)=0$
$(a-17)(a-7)=0$
$\Rightarrow \mathrm{a}=17$ and $\mathrm{a}=7$
5. Find $x$, if $\sqrt{2}, x, \frac{1}{\sqrt{2}}$ are in G.P
$G=\sqrt{\mathrm{ab}}$
$\mathrm{x}=\sqrt{\mathrm{ab}}$
$x^{2}=a b$
$\mathrm{x}^{2}=\sqrt{2} \mathrm{x} \frac{1}{\sqrt{2}}$
$x^{2}=1$
$\mathrm{x}=1$
6. The arithmetic mean of two numbers is 17 and their geometric mean is 15 . Find the numbers.
$\mathrm{A}=\frac{\mathrm{a}+\mathrm{b}}{2}=17, \mathrm{G}=\sqrt{\mathrm{ab}}=15$
$\frac{\mathrm{a}+\mathrm{b}}{2}=17$
$\Rightarrow \mathrm{a}+\mathrm{b}=34$
$\mathrm{b}=34-\mathrm{a}$
$\sqrt{\mathrm{ab}}=15$
$\Rightarrow \mathrm{ab}=225$
$\Rightarrow \mathrm{a}(34-\mathrm{a})=225$ [From (1)]
$\Rightarrow 34 \mathrm{a}-a^{2}=225$
$\Rightarrow a^{2}-34 a+225=0$
$\Rightarrow a^{2}-25 \mathrm{a}-9 \mathrm{a}+225=0$
$\Rightarrow a(a-25)-9(a-25)=0$
$\Rightarrow(a-25)(a-9)=0$
$\Rightarrow a=25$ అథదఠ $\mathrm{a}=9$
$\therefore \mathrm{b}=34-25=9$ or $\mathrm{b}=34-9=25$
$\therefore$ Numbers are 9 and 25
7. The arithmetic mean of two numbers is $\frac{13}{2}$ and their geometric mean is 6 .find their harmonic mean.
$A=\frac{a+b}{2}=\frac{13}{2}, G=\sqrt{a b}=6$
$\frac{\mathrm{a}+\mathrm{b}}{2}=\frac{13}{2}$
$\Rightarrow \mathrm{a}+\mathrm{b}=13$
$\sqrt{\mathrm{ab}}=6$
$\Rightarrow a b=36$
$\mathrm{H}=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}$
$\mathrm{H}=\frac{2 \times 36}{13}$
$\mathrm{H}=\frac{72}{13}$

